
Quarterly Environmental Monitoring Report (QEMR)

Q2 March 2025

Project No: **ENRS0033**

Dunmore Recycling & Waste Depot, 55 Buckleys Road, Dunmore, NSW Address: 16/05/2025 Date:

www.enrs.com.au

(02) 4448 5490

projects@enrs.com.au

ABN: 68 600 154 596

Author and Document Control

Written / Submitted By	Reviewed / Approved By
ABookon	
SI COM	
Taite Beeston (BSc.)	
Geologist & Environmental Consultant	

Record of Distribution:

Copies	Status	Document	Date	Prepared For
PDF	Rev.1	202503 Q2_ENRS0033_SCC Dunmore Landfill_QEMR	16/05/2025	ALS c/- SCC

Executive Summary

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Quarterly Environmental Monitoring Report (QEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (QEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the second quarter (Q2) of the 2024-2025 monitoring period. Environmental monitoring is conducted by ALS over four (4) quarterly sampling events which and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984.

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site is an active landfill and accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing. The Site contains multiple landfill cells consisting of a historic legacy cell and multiple lined cells.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three (3) primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre. ENRS note that EPL No. 12903 does not specify any monitoring or sampling requirements.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984).

The objectives of this AEMR are to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;

- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in a Quarterly Environmental Monitoring Report.

The scope of work for this QEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the monitoring events in regard to the following tasks:

- > Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for water, dust samples and methane gas collected and provided by ALS and landfill gas flare temperatures collected by LGI, as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust, methane gas, gas flare temperatures);
- Review the quarterly environmental monitoring data and reports from the first quarterly sampling event and compare against data from at least the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

Based on the findings obtained during this quarterly monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. Depth to groundwater was <5mBGL. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the quarterly monitoring period reported exceedances above the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within groundwater wells across the Site. The analytes were considered to be key indicators of leachate. The exceedances were within range of historical values with no significant changes in concentrations;
- Offsite sample locations within Rocklow Creek generally reported concentrations of analytes below the SAC. However, concentrations of ammonia were reported above the ecological stressor value;
- Surface gas methane monitoring of the landfill cap reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1. A minor exceedance was reported in dust gauge DDG4. The potential source of the dust should be reviewed by the client. Monitoring should continue in accordance with EPL 5984 requirements;
- Gas Flare temperatures were reported below the required KPI of 760 degrees Celsius;

- Based on the data reviewed for the quarterly monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses were present within groundwater and consistent with the historical data;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

Table of Contents

E	kecutiv	e Summary	. iii
1	Intr	oduction	10
	1.1	Project Background	10
	1.1.	1 Site History	10
	1.2	EPL Requirements	10
	1.3	Objectives	11
	1.4	Scope of Work	11
2	Site	e Identification	11
	2.1	Site Identification	11
	2.2	Surrounding Land Use	13
	2.2.	1 Sensitive Receptors	14
	2.3	Topography	14
	2.4	Soil Landscape	14
	2.5	Geology	15
	2.6	Hydrogeology	15
	2.6.	1 Existing Bores	15
	2.6.	2 Flow Regime	15
	2.7	Surface Water	16
3	Ass	essment Criteria	16
	3.1	Water Quality Guidelines	16
	3.1	Groundwater & Surface water Assessment Criteria	16
	3.1.	1 Ammonia Assessment criteria	17
	3.2	Dust Deposition Assessment Criteria	18
	3.3	Surface Methane Gas Assessment Criteria	18
	3.4	Gas Accumulation Assessment Criteria within Enclosed Structures	18
4	Data	a Quality Objectives (DQO)	18
	4.1	Step 1: State the problem	18
	4.2	Step 2: Identify the decision/goal of the study	18
	4.3	Step 3: Identify the information inputs	19
	4.4	Step 4: Define the study boundaries	19
	4.5	Step 5: Develop the analytical approach (decision rule)	19

	4.6	Step	6: Specify performance or acceptance criteria	19
	4.7	Step	7: Develop the plan for obtaining data	19
5	San	npling	Methodology	20
	5.1	Wat	er Sampling	20
	5.1	.1	Location of Water Monitoring Points	20
	5.1	.2	Depth to Water	20
	5.1	.3	Sample Collection	20
	5.1	.4	Groundwater Sampling	21
	5.1	.5	Field Testing	21
	5.2	Dust	t Deposition Sampling	21
	5.3	Surf	ace Methane Gas Monitoring	21
	5.4	Gas	Accumulation Monitoring in Enclosed Structures	22
	5.5	Labo	pratory Analysis	22
	5.6	Flare	e Monitoring	22
	5.7	QAC	2C	22
6	Wa	ter Qı	uality Results	23
	6.1	Ove	rflow Results	23
	6.2	Phys	sical Indicators	23
	6.2	.1	Groundwater Depth	23
	6.2	.2	Salinity	24
	6.2	.3	Dissolved Oxygen	24
	6.2	.4	рН	25
	6.2	.5	Total Suspended Solids (TSS)	25
	6.3	Inor	ganic Analytes	25
	6.3	.1	Ammonia	26
	6.3	.2	Nitrate	26
	6.3	.3	Nitrite	26
	6.4	Anic	ons	26
	6.4	.1	Chloride	26
	6.4	.2	Fluoride	27
	6.4	.3	Sulphate	27
	6.4	.4	Total Alkalinity	27
	6.4	.5	Total and Bicarbonate Alkalinity	27

6	5.5	Metals	27
	6.5.3	1 Manganese (Total Mn)	27
	6.5.2	2 Iron (total Fe)	27
	6.5.3	3 Iron (Dissolved Fe)	27
e	5.6	Calcium	28
e	5.7	Potassium	28
e	5.8	Organic Analytes	28
	6.8.3	1 Total Organic Carbon	28
7	Dust	t Gauge Results	28
8	Met	hane Monitoring Results	29
8	3.1	Surface Gas Methane	29
8	3.2	Gas Accumulation Monitoring in Enclosed Structures	29
9	Elar	e Operations Results	29
9	Fidi	e Operations Results	
9 10		lity Assurance/Quality Control Data Evaluation (QAQC)	
10			30
10	Qua	lity Assurance/Quality Control Data Evaluation (QAQC)	30 30
10	Qua 10.1	lity Assurance/Quality Control Data Evaluation (QAQC)	30 30 32
10	Qua 10.1 10.2 10.3	Iity Assurance/Quality Control Data Evaluation (QAQC) Iiity Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Iiity Control Data Evaluation (QAQC) Laboratory QAQC Iiity Control Data Evaluation (QAQC)	30 32 34
10 1 1 1 11	Qua 10.1 10.2 10.3	Iity Assurance/Quality Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Field Sampling QAQC Image: Control Data Evaluation (QAQC) Laboratory QAQC Image: Control Data Evaluation (QAQC) QAQC Discussion Image: Control Data Evaluation (QAQC)	30 30 32 34 35
10 1 1 11	Qua 10.1 10.2 10.3 Qua	Iity Assurance/Quality Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Field Sampling QAQC Image: Control Data Evaluation (QAQC) Laboratory QAQC Image: Control Data Evaluation (QAQC) QAQC Discussion Image: Control Data Evaluation (QAQC) rterly Environmental Assessment Image: Control Data Evaluation (QAQC)	30 30 32 34 35 35
10 1 1 11	Qua 10.1 10.2 10.3 Qua 11.1	lity Assurance/Quality Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Field Sampling QAQC Image: Control Data Evaluation (QAQC) Laboratory QAQC Image: Control Data Evaluation (QAQC) QAQC Discussion Image: Control Data Evaluation (QAQC) rterly Environmental Assessment Image: Control Data Evaluation (QAQC) Monitoring Point Summary Image: Control Data Evaluation (QAQC) Environmental Management Image: Control Data Evaluation (QAQC)	30 30 32 34 35 35 36
10 1 1 1 1 1 1	Qua 10.1 10.2 10.3 Qua 11.1	lity Assurance/Quality Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Field Sampling QAQC Image: Control Data Evaluation (QAQC) Laboratory QAQC Image: Control Data Evaluation (QAQC) QAQC Discussion Image: Control Data Evaluation (QAQC) rterly Environmental Assessment Image: Control Data Evaluation (QAQC) Monitoring Point Summary Image: Control Data Evaluation (QAQC) Environmental Management Image: Control Data Evaluation (QAQC)	30 30 32 34 35 35 36 36
10 1 1 1 1 1 1 1	Qua 10.1 10.2 10.3 Qua 11.1 11.2 11.2	lity Assurance/Quality Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Field Sampling QAQC Image: Control Data Evaluation (QAQC) Laboratory QAQC Image: Control Data Evaluation (QAQC) QAQC Discussion Image: Control Data Evaluation (QAQC) rterly Environmental Assessment Image: Control Data Evaluation (QAQC) Monitoring Point Summary Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluation (QAQC) Image: Control Data Evaluat	30 32 34 35 36 36 36
10 1 1 1 1 1 1 1	Qua 10.1 10.2 10.3 Qua 11.1 11.2 11.2 11.3	lity Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Field Sampling QAQC Field Sampling QAQC Laboratory QAQC Field Sampling QAQC QAQC Discussion Field Sampling QAQC Intervironmental Assessment Field Sampling Point Summary Intervironmental Management Field Sampling Point Summary Intervironmental Management Field Sampling Point Sampling Point Sampling Intervironmental Safeguards Field Sampling Point Sampling	30 32 34 35 36 36 36 36
10 1 1 1 1 1 1 1 1 1	Qua 10.1 10.2 10.3 Qua 11.1 11.2 11.2 11.3 11.4 Con	Iity Assurance/Quality Control Data Evaluation (QAQC) Image: State S	 30 32 34 35 36 36 36 36 36 36 37

List of Tables

Table 2-1:	Site Identification	12
Table 2-2:	Summary of surrounding land use	14
Table 3-1:	Water Quality Assessment Criteria	16
Table 3-2:	Groundwater & Surface Water Assessment Criteria	17

Table 4-1: Summary of Data Quality Objectives (DQO)	19
Table 5-1: Summary of QAQC for Sample Program	22
Table 6-1: Summary of Overflow Events & Results	23
Table 7-1: Summary of Dust Gauge Results	29
Table 10-1: Sampling QAQC Procedures	30
Table 10-2: Laboratory QAQC procedures	33
Table 10-3: QAQC and Data Evaluation Summary	34
Table 14-1: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 1 December 2024	44
Table 14-2: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 1	
December 2024	45

List of Figures

Figure 2-1 Project Location	13
Figure 14-1: Sampling Points & Site Plan	41
Figure 14-2: Surface Methane Gas Sample Transects	42

Appendices

Appendix A:	EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022. Updated 18/03/2025)
Appendix B:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples
Appendix C:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples
Appendix D:	Surface Gas (Methane) Field Sheets
Appendix E:	Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Events
Appendix F:	Calibration Certificates
Appendix G:	Gas Flare Reports

1 Introduction

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Quarterly Environmental Monitoring Report (QEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (QEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the second quarter (Q2) of the 2024-2025 monitoring period. Environmental monitoring is conducted by ALS over four (4) quarterly sampling events which and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984.

1.1 Project Background

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site is an active landfill and accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing. The Site contains multiple landfill cells consisting of a historic legacy cell and multiple lined cells.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three (3) primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre. ENRS note that EPL No. 12903 does not specify any monitoring or sampling requirements.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984).

1.3 Objectives

The objectives of this AEMR are to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify trends of the environmental monitoring data over the reporting period;
- > Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in a Quarterly Environmental Monitoring Report.

1.4 Scope of Work

The scope of work for this QEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the monitoring events in regard to the following tasks:

- > Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for water, dust samples and methane gas collected and provided by ALS and landfill gas flare temperatures collected by LGI, as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust, methane gas, gas flare temperatures);
- Review the quarterly environmental monitoring data and reports from the first quarterly sampling event and compare against data from at least the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2 Site Identification

2.1 Site Identification

The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 2-1** below. Details of the Site boundary and sampling points are provided in the Site Plan as **Figure 14-1**. The key features required to identify the Site are summarised in **Table 2-1**.

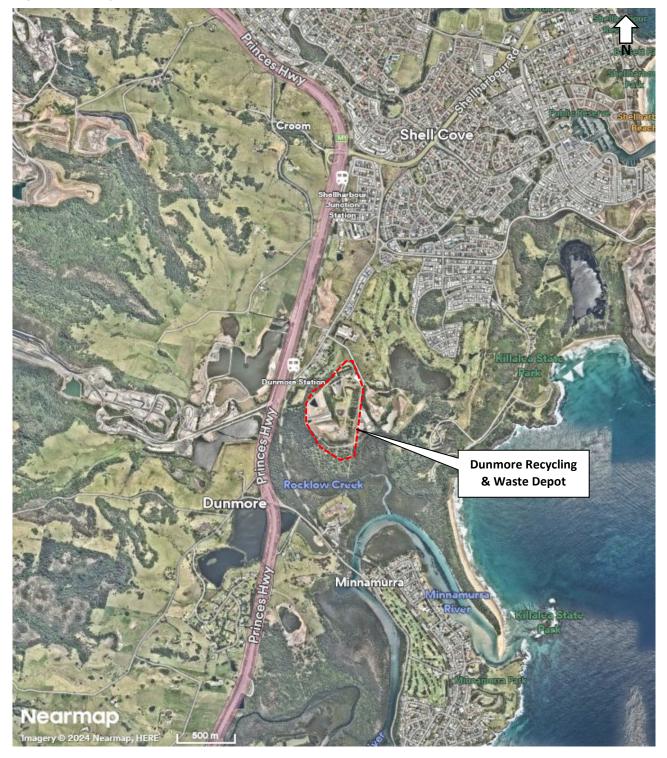


Table 2-1: Site Identification

Site	Description
Site name	Dunmore Recycling and Waste Depot
Street address	44 Buckleys Road, Dunmore, NSW 2529
Property description	-
(Lot / Deposited Plan)	21 / 653009 and 1 / 419907
Easting/Northing (GDA2020) (approximate centre of Site)	Zone 56H Easting: 302280 Northing: 6168169 (Approximate centre of Site)
Current owners	Shellharbour City Council
Current occupiers	Shellharbour City Council
Site area (total)	54.78 hectares
Site dimensions	Irregular shaped boundary. Please refer to Figure 14-1.
Areas excluded or inaccessible	Assessment was limited to the available data for the sample points listed in the EPL.
Local government area	Shellharbour City Council
Current zoning	RU1 Primary Production
Locality map	Albion Park 9028
Trigger for assessment	Reporting requirements of EPL 5984.
State or Local government statutory controls	 EPL 5984; Contaminated Land Management Act 1997; Environment Protection Act 1997; Waste Avoidance and Resource Recovery Act (2001). Work Health and Safety Act 2011; and Work Health and Safety Regulations 2011.
Legal permissions to access the Site obtained or required	N/A. ENRS did not access the Site.
Consent of adjoining landowners and/or occupiers to access land (if required)	N/A. Not required for this scope of work.

Figure 2-1 Project Location

Source: Nearmap.com.au (cited 15/10/2024)

2.2 Surrounding Land Use

The current activities and operations on adjacent properties and the surrounding area include:

Table 2-2: Summary of surrounding land use

Direction	Land Use
North	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.
East	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.
South	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.
West	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- > Recreational users of the Minnamurra River estuary environs;
- Neighbouring and down gradient stakeholders;
- Ecological receptors flora and fauna.
- Shallow soil, groundwater and stormwater vertical and lateral migration of contaminants (if any) and connectivity with shallow groundwater, drainage waterways and nearby tributaries; and
- Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 Topography

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 Soil Landscape

Review of the Sites soil landscape was conducted with reference to the Kiama 1:100,000 soil landscape map. The Site was mapped as underlain by the Mangrove Creek Estuarine (mc) organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Landscape – vegetated tidal flats in estuarine areas on Holocene sediments. Relief <3 m. Slopes <3%. Mangrove open-scrub, saltmarsh herbland, sedgeland and low open-forest

Soils - deep (>150 cm) Siliceous Sands (Uc1.21) and Calcareous Sands (Uc1.11) and Solonchaks (Uc1.11) occur on mangrove flats. Humic Gley Soils (Uc4.53) and Solonchaks (Uc1.11) occur on saltmarshes.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils.

2.5 Geology

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet (See Figure 4). The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb) characterised by Latite. Based on the mapped geology, previous investigations and borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 Hydrogeology

Groundwater resources in the area are expected to be associated with Shallow unconfined alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater. Given the spatial distribution of the bores and disturbed ground condition expected within the land fill cell, groundwater contours could not be accurately mapped.

A review of the NSW Office of Water (NOW) existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see Figure 5). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (Boral Site) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (Environmental Earth Sciences, 2018) have identified that groundwater flows vary across the Site, but the general trend is south, towards Rocklow Creek.

Based on the unconfined nature of the aquifers, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, was largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State

Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 Surface Water

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3 Assessment Criteria

ENRS have adopted the most appropriate criteria in accordance with current state and national guidelines. Where available, Australian and NSW EPA endorsed guidelines have been referenced in preference to international standards.

3.1 Water Quality Guidelines

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC;2013). The relevant criteria to protect environmental values are provided in **Table 3-1**:

Table 3-1: Water Quality Assessment Criteria

Environmental Value	Relevant Guideline
Ecosystems / Health Screening Levels	 ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality); ASC NEPM (2013); and Health Screening Levels for Petroleum Hydrocarbons in Soil & Groundwater (CRC CARE, Sept. 2011)
Drinking Water	 Australian Drinking Water Guidelines (ADWG)

3.1 Groundwater & Surface water Assessment Criteria

The ANZG (2018) provide <u>default guideline values</u> (DGVs) for four (4) levels of protection categorised by the percent of species possibly affected, being 80%, 90%, 95% or 99% of species. Where DGVs are not available reference is made against the ANZECC (2000) Trigger Values (TV). The NSW Office of Water (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the 95 per cent of species level of protection. This assessment has adopted the assessment criteria considered most appropriate for the contaminants of concern based on the Site's EPL and results provided by ALS. The adopted TV for the Site Assessment Criteria (SAC) are summarised in **Table 3-2** below.

Apolyto	Units	Fresh	Marine	Drinking Water ^B			
Analyte	Units	Water ^A	Water ^A	Health	Aesthetic		
Chloride	mg/L	-	-	-	250		
Calcium	mg/L	-	-	-	-		
Magnesium	mg/L	-	-	-	-		
Sodium	mg/L	-	-	-	180		
Potassium	mg/L	-	-	-	-		
Manganese	mg/L	1.9	-	0.5	0.1		
Total iron	mg/L	-	-	-	0.3		
Dissolved iron	mg/L	-	-	-	0.3		
Fluoride	mg/L	-	-	1.5	-		
Ammonia as N ^C	mg/L	0.91 (pH 8)	0.91 (pH 8)	-	0.5		
Nitrate as N	mg/L	0.7	-	50	-		
Nitrite as N	mg/L	-	-	3	-		
Total Organic Carbon	mg/L	-	-	-	-		
Bicarbonate alkalinity as CaCO3	mg/L	-	-	-	-		
Total alkalinity as CaCO3	mg/L	-	-	-	-		
Sulfate as SO4 - turbidimetric	mg/L	-	-	-	250		
Dissolved Oxygen - % Saturation (surface water only)	%	85-110%	-	-	-		
Suspended Solids (SS) (surface water only)	mg/L	-	-	-	-		
Turbidity (surface water only)	NTU	-	-	-	5		
рН	pН	6.5-8.5		6.5-8.5	6.5-8.5		
Electrical Conductivity	µS/cm	2200	-	-	-		

Table 3-2: Groundwater & Surface Water Assessment Criteria

Table notes:

Criteria is only provided for the analytes test by ALS and listed within EPL 5984.

A: Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.

B: Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).

D. Criteria for ammonia. See Section 3.1.1:

3.1.1 Ammonia Assessment criteria

In addition to the default TV of 0.91mg/L (pH 8) for ammonia, Table 3.3.2 of the ANZECC (2000) also provides stressor values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems. The table provides a stressor guideline for ammonia of **0.2mg/L** at pH 8 for lowland rivers. For the purposes of this assessment, the value has been applied to all water samples, excluding the leachate tank.

pH specific ammonia TVs. Additional sample point specific pH dependant trigger values for total ammonia were also adopted when a sample was outside of 8 pH units. Sample specific values were

based on Table 8.3.7 of the ANZECC (2000). The additional criteria and results are presented in Table 14-2 attached.

3.2 Dust Deposition Assessment Criteria

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1-Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m2/month.

3.3 Surface Methane Gas Assessment Criteria

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

3.4 Gas Accumulation Assessment Criteria within Enclosed Structures

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold gas levels to ensure that gas is not accumulating within enclosed structures on or within 250m of deposited waste or leachate storage. The acceptable threshold for 1% (volume/volume).

4 Data Quality Objectives (DQO)

If sampling is conducted, Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented in the National Environment Protection (Assessment of Site Contamination) Measure (NEPC;2013).

4.1 Step 1: State the problem

The Site is currently operating as an active landfill and requires regular environmental monitoring in accordance with the EPL 5984.

4.2 Step 2: Identify the decision/goal of the study

The primary goals / objectives of the investigation program were to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in a Quarterly Environmental Monitoring Report.

4.3 Step 3: Identify the information inputs

The provided results shall be used to identify any risks to the sensitive receptors or change in site conditions. The following inputs were required:

- Representative environmental samples;
- Measurements of environmental parameters;
- Comparison of the parameter results against the adopted Site Assessment Criteria (SAC);
- > The completion of an Quarterly Environmental Monitoring Report.

4.4 Step 4: Define the study boundaries

The assessment was limited to sampling locations listed in EPL 5984. As listed in **Appendix A** and depicted in **Figure 14-1** - **Figure 14-2**.

4.5 Step 5: Develop the analytical approach (decision rule)

The site information and results obtained from this assessment scope will be compared against the NSW EPA endorsed SAC documented in **Section 3** with considerations of the land use and nearby receptors. The decision rule process is defined by the following:

- > QA/QC indicate the results are reliable;
- Laboratory Practical Quantitation Limits (PQL) or Limits of Reporting (LOR) are less than the SAC; and
- > Results meet the adopted SAC and/or are within background levels and regulatory criteria.

4.6 Step 6: Specify performance or acceptance criteria

To ensure the quality of the environmental data collected during the assessment, detailed quality assurance and quality control (QA/QC) measures will be applied by ALS. The QA/QC measures will be followed from the inception of the project, during field sampling, laboratory analysis of samples and data reporting. The QAQC measures understood to have been adopted by ALS are documented in detail below within **Table 5-1**.

4.7 Step 7: Develop the plan for obtaining data

The seventh and final step involves identifying the most effective sampling and analysis design for generating the data that is required to satisfy the data quality objectives. The required sampling program is based on and accounts for the following key points:

- Requirements of Sites EPLs; No. 5984 and 12903;
- > The results will be compared against the adopted SAC for the proposed land use.

The indicators (DQI) used to identify that data obtained and provided by ALS has been done so in a way which meets project data quality objectives (DQO) summarised below.

Table 4-1: Summary of Data Quality Objectives (DQO)

DQO	Evaluation Criteria
Documentation	 Completion of field records, chain of custody documentation,
completeness	laboratory test certificates from NATA-accredited laboratories.

DQO	Evaluation Criteria
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	 Adequate sampling coverage of all required EPL sample points.
Precision and accuracy for sampling and analysis	 Use properly trained and qualified field personnel and achieve laboratory QC criteria. Blind field duplicates to be collected at a minimum rate of 1 in 20 samples. RPD's to be less than 30% for inorganic and 50% for organic analyses. Rinsate samples not considered necessary as all PCoC measured by the lab were assumed to be present at the site. Disposable single use items used for the collection of samples.

5 Sampling Methodology

Field sampling was conducted by ALS Environmental (Wollongong) as commissioned by SCC on quarterly basis. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following subsections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL's and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

5.1 Water Sampling

5.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in Appendix A. The water sampling regime includes; five (5) surface waters, one (1) located onsite and four (4) located off-site; twelve (12) groundwater monitoring wells surrounding the landfill operations; and one (1) leachate point. Sampling locations are illustrated in Figure 2 attached.

5.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. No LNAPL was reported on field sheets provided by ALS.

5.1.3 Sample Collection

Sampling is conducted independently by ALS Environmental under contract with SCC. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling was conducted in accordance with ALS sampling protocols.

5.1.4 Groundwater Sampling

Groundwater wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated wells are sampled before likely higher contaminated wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes with samples being collected using clear disposal bailers or low flow parameter stabilisation methods applied with field sheets provided to document pumping volumes and field parameters. Post sampling all samples were sealed in laboratory-prepared sampling containers appropriate for the analysis.

Surface water samples were collected as 'grab samples' from the midpoint of the source at middepth.

Post flushing, leachate samples were sampled from a tap on the discharge line directly into purpose specific, pre preserved sample containers.

All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- > Minimal practical disturbance during sampling;
- Samples placed in sample containers as soon as possible;
- Sample containers contain zero headspace;
- > Samples placed directly on ice and transported to the laboratory as soon as possible; and
- > Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

5.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- > Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- > Temperature; and
- ➢ pH (Acidity).

5.2 Dust Deposition Sampling

Measurement of dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere.

Dust collection gauges were set up for a one (1) month periods at during each quarterly sampling event. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

5.3 Surface Methane Gas Monitoring

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was

below 10 km/hr. Testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in Figure 3. Transects were recorded using a Magellan SporTrak GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste.

5.4 Gas Accumulation Monitoring in Enclosed Structures

The concentration of methane gas (in units of percent volume/volume) inside all enclosed structures within 250m of emplaced waste or leachate storage facility at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

The internal methane concentrations for each enclosed structure were recorded by a field technician. A site plan depicting the location onsite of each structure provided in Figure 3. Any depressions or surface fissures away from the sampling grid were also investigated.

5.5 Laboratory Analysis

ALS, a NATA accredited laboratory, was contracted by SCC to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

5.6 Flare Monitoring

Landfill gases (LFG) are formed through bacterial action on emplaced waste and are a normal byproduct of Landfilling operations. Landfill gas is a mixture of many different gases, typically its major components include methane and carbon dioxide. Smaller concentrations of nitrogen, oxygen, ammonia, sulphides, hydrogen, carbon monoxide, and nonmethane organic compounds (NMOCs) and Volatile Organic Compounds (VOC's) may also be present.

When operated efficiently the use of a gas flare to burn landfill gas can significantly reduce emissions of methane, NMOCs and VOC's.

The flare was monitored, maintained and operated by LGI LTD. Copies of LFG reports for the relevant reporting period are included as Appendix G.

5.7 QAQC

The Quality Assurance and Quality Control (QA/QC) protocols for the sample program conducted by ALS are summarised in **Table 5-1**.

Table 5-1:	Summary o	f QAQC for	Sample	Program
------------	-----------	------------	--------	---------

Protocol	Description
Sampling Team	Site personnel comprised only experienced and qualified environmental professionals trained in conducting site contamination investigations.

Sample Method	Samples obtained in laboratory prepared containers with preservatives appropriate for the required analysis.
Calibration	Equipment calibration certificates for each sampling event.
Sample Equipment	All sample equipment disposed or decontaminated between sample sites.
Field Screening	Visual and manual inspection of sample materials for potential contamination recorded on field sheets.
Chain of Custody Forms	All samples logged and transferred under appropriately completed Chain of Custody (COC) forms with Sample Receipts issued by the laboratory.
Blind Field Duplicate	At least one (1) blind field duplicate collected per 20 samples and submitted for analysis accompanied by COC forms.

6 Water Quality Results

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in Table 14-1 and Table 14-2 with comparison against the relevant Site Assessment Criteria (SAC). The laboratory certificates of analysis are provided in Appendix B, Appendix C, Appendix D and Appendix E.

6.1 **Overflow Results**

ENRS understands that two (2) overflow events occurred during the Q2 monitoring period at the overflow point SWP1 (EPA Point 1). ENRS understands that the overflow events occurred to a high rainfall event. Overflow samples were analysed for total suspended solids and pH. Laboratory chain of custody and certificates of analysis are provided within Appendix E. The following table summarises the results.

Sample Date	рН	TSS	Comment
28/03/2025	7.9	<5 mg/L	<sac satisfactory.<="" td=""></sac>
31/03/2025	7.6	<7 mg/L	<sac satisfactory.<="" td=""></sac>

Table 6-1: Summary of Overflow Events & Results

6.2 Physical Indicators

6.2.1 Groundwater Depth

The measured depth to groundwater remained relatively consistent with a low degree of variance in comparison to the historical data. The Site was charactered by a shallow water table of less than 5.0 mBGL. The depth to water was measured between:

Quarter 2 March 2025: 0.86 mbgl (BH-15) and 5.02 mbgl (BH-14).

6.2.2 Salinity

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between 125 μ S/cm - 2,200 μ S/cm (~1,500 mg/L). Marine waters may be characterised by an EC between 35,000 μ S/cm - 50,000 μ S/cm.

Groundwater

During the monitoring period, salinity in groundwater samples was generally characterised by freshwater EC values in the upgradient northern portions of the Sites, tending to become more saline towards Rocklow Creek, being a tidal river system. Results for groundwater were reported between 414 μ S/cm (BH19r) and 6,980 μ S/cm (BH1c). The results were all considered to be in range of historical values.

Surface Waters

Surface water samples collected from Rocklow Creek reported EC values between 9,780 μ S/cm (SWC_2) and 17,200 μ S/cm (SWC_Down). EC values were consistent with the saline conditions of a tidal river system and may fluctuate due to Rocklow Creek being a tidal system.

Results for onsite surface water location SWP1 was reported at 1,180 μ S/cm (Q1) which was in range of historical data.

6.2.3 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field for surface waters only. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their efficient metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulphide and Ammonia.

The ANZG (2018) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm. DO is reported by the laboratory in mg/L which be converted to a percentage.

Surface Waters

Dissolved Oxygen within onsite surface water location SWP-1 was 5.23 mg/L or 60.7%. The results were outside of the TV and consistent with historical data.

Results for DO within offsite surface water locations within Rocklow Creek ranged from 3.22 mg/L or 43.4% (SWC_2) and to 4.43 mg/L or 58.5% (SWC_up). The results were generally consistent with the historical data.

Leachate

Dissolved oxygen within leachate tank LP1 was 7.0 mg/L or 85.2%. Results are within range of the historical data.

6.2.4 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Groundwater

Results pH in groundwater was reported between 6.6 (BH19r) and 7.2 (BH18 and BH22). The results were relatively neutral and within the SAC. No exceedances were recorded. The results were considered to be satisfactory and within range of historical data.

Surface Water

Results for pH in surface waters of Rocklow Creek reported neutral conditions between 7.2 (SWC_up, SWC_2) and 7.3 (SWC_Down, SWC_Down 2). The results were within the SAC and range of historical values.

Leachate

The pH of leachate tank LP1 was 8.50 which was within the range of historical values.

6.2.5 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces. TSS was measured for surface water sample points only.

Results for TSS in Rocklow Creek samples were below the LOR of <5 mg/L in all sample locations. The results were within range of historical values.

Results for TSS in onsite SWP1 was 7 mg/L which was within range of historical values.

6.3 Inorganic Analytes

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher pH.

6.3.1 Ammonia

Groundwater

Results for ammonia in groundwater were reported in exceedance of the SAC (ESLs of 0.2 mg/L, 0.91 mg/L and pH modified TV's) in all sample locations. Results were considered to be significantly above the SAC and within range of the previous values. A table outlining the ammonia results is provided in Table 14-2 attached.

Surface Water

Ammonia in onsite surface water dam SWP-1 was reported at 0.04 mg/L which was below the minimum SAC of 0.2 mg/L.

Ammonia concentrations in Rocklow Creek were reported at 0.34 mg/L (SWC_Down 2), 0.39 mg/L (SWC_2), 0.46 mg/L (SWC_Up) and 0.47 mg/L (SWC_down). All results in Rocklow Creek were above the ecological stressor value or 0.2 mg/L. The results were below the 95% trigger values.

Leachate

Ammonia in leachate tank LP1 was 0.18 mg/L. The result was low in comparison to previous sampling events. In general, results are generally expected to be elevated in untreated leachate.

6.3.2 Nitrate

Groundwater

Results for Nitrate in groundwater samples were reported below the SAC of 0.7 mg/L. No exceedances were reported. The results were generally within range of historical data.

Surface Water

Nitrate concentrations for all surface water samples were reported below the SAC and considered satisfactory.

Leachate

The nitrate concentration in leachate tank LP1 was 453 mg/L. Increased concentrations of nitrate may be characterised of untreated leachate.

6.3.3 Nitrite

Results for nitrate in all groundwater, surface water and Leachate Tank LP1 were all reported below the SAC. The results were reported within range of historical values

6.4 Anions

6.4.1 Chloride

The results for chloride in groundwater across the Site varied across the Site. Elevated chloride results were measured within Rocklow Creek which may be characteristic of a marine tidal river system. In comparison, upgradient groundwater results reported slightly lower chloride concentrations.

Results for chloride within groundwater monitoring wells were reported between 13mg/L (BH19r) and 1,490 mg/L (BH15). Onsite surface water dam SWP1 reported concentrations of chloride of 148 mg/L. Chloride within Leachate Tank LP1 was 1,090 mg/L. Results for Rocklow Creek were reported between 11,200 mg/L (SWC_up) and 13,500 mg/L (SWC_down 2).

6.4.2 Fluoride

The results for fluoride in groundwater, surface water and leachate tank were all reported below the SAC and were generally consistent with the historical data.

6.4.3 Sulphate

Results for sulphate in groundwater generally reported satisfactory results that were in range of the historical data. Higher sulphate results were reported in Rocklow Creek, which may be characteristic of a marine tidal river system.

6.4.4 Total Alkalinity

6.4.5 Total and Bicarbonate Alkalinity

Alkalinity is a measure of the ability of water to neutralize acids, specifically related to the presence of bicarbonate ions (HCO_3^{-}). At a landfill, groundwater can be affected by various contaminants from decomposing waste, and the bicarbonate alkalinity plays an important role in mitigating some of the environmental impacts. Bicarbonate alkalinity acts as a buffer to maintain the pH of water. Typical bicarbonate alkalinity levels in freshwater range from 20 to 200 mg/L and marine water of 1200 to 2500 mg/L.

Total and bicarbonate alkalinity in groundwater generally ranged between 222mg/L (BH19r) and 888mg/L (BH13). Two (2) elevated results were reported of 1,890 mg/L (BH9) and 2,780 mg/L (BH1c).

Surface waters were consistent with historical data and within the normal expected range.

6.5 Metals

6.5.1 Manganese (Total Mn)

Groundwater

Results for manganese in all groundwater, surface water and leachate tanks samples were reported below the 95% TV of 1.9 mg/L which was considered satisfactory.

6.5.2 Iron (total Fe)

Total iron was measured in surface water and leachate tank LP1 only. Results for total iron in Rocklow Creek were reported between 0.2 mg/L (SWC_Down 2) and 0.49 (SWC_up). Total iron in leachate tank LP1 was 0.92 mg/L. The results were generally consistent with historical data.

6.5.3 Iron (Dissolved Fe)

Concentrations of dissolved iron in groundwater were reported results between 0.39 mg/L (BH9) and 16.6 mg/L (BH12r). The results were generally consistent with the historical data.

6.6 Calcium

Results for calcium in groundwater reported results between 56 mg/L (BH19r) and 218 mg/L (BH9).

Results for calcium in Rocklow creek surface water samples were reported between 335 mg/L (SWC_Up) and 392 mg/L (SWC_Down 2). Results for calcium in onsite dam SWP1 was 53 mg/L. Calcium in leachate tank LP1 was 124 mg/L.

6.7 Potassium

Elevated potassium levels in groundwater near a landfill could be an indicator of contamination. Leachate from decomposing organic waste in landfills can contribute to higher concentrations of potassium, especially from fertilizers and other waste materials. High potassium concentrations in landfill leachate might reflect the breakdown of organic waste (e.g., food or agricultural waste) containing potassium-rich compounds.

Results for potassium in groundwater and surface water generally reported results considered to be within range of normal background levels and were within range of the historical data. Higher elevated results were reported in BH1c of 116mg/L.

6.8 Organic Analytes

6.8.1 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater. However, high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- acting as proton donors/acceptors;
- providing pH buffering;
- > participating in mineral dissolution/precipitation reactions; and
- > providing carbon substrate for microbe-based biodegradation.

Results for TOC in groundwater and surface water samples were generally low and consistent with historical data.

TOC in leachate tank LP1 was reported at 217 mg/L which was generally consistent with historical data.

7 Dust Gauge Results

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month between the dates of the 05/02/2025 - 12/03/2025. Sampling was conducted in general accordance with AS3580.10.1. Dust gauge locations are provided in **Figure 14-1** attached. A summary of the results is provided in **Table 7-1** below.

Quarter	Sample ID	Guideline Criteria (g/m2/month)	Total Insolvable Matter (g/m²/month)	Comment
Quarter 1	DDG1		0.6	Below SAC
01/11/2024	DDG2	4	0.7	Below SAC
-	DDG3	4	1.0	Below SAC
10/12/2024	DDG4		6.3	Above SAC

Table 7-1: Summary of Dust Gauge Results

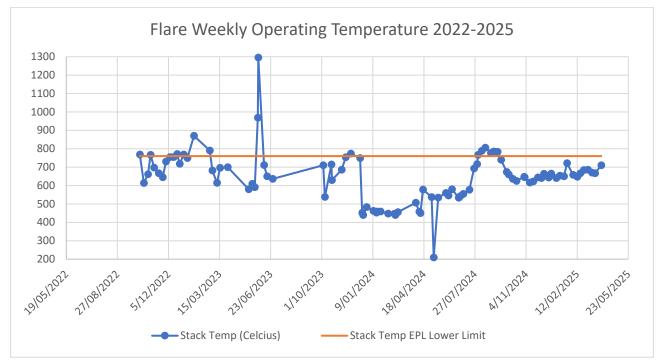
Results for depositional dust sampling during the Q2 2025 monitoring periods generally reported levels of dust below the adopted assessment criteria of 4 g/m²/month. However, dust gauge DDG4 reported a minor exceedance above the SAC. DDG4 has historically reported exceedances. It is recommended that client reviews the potential sources of excess dust in areas proximal to DDG4. The client should look within the site boundary and also consider external factors which may influence the results. Continue monitoring in accordance with EPL 5984.

8 Methane Monitoring Results

8.1 Surface Gas Methane

The surface gas monitoring for the Q2 2025 monitoring period DID NOT detect any levels of methane above the EPA license limits of 500 ppm. The results were considered satisfactory. A table of results is provided in **Appendix D**.

8.2 Gas Accumulation Monitoring in Enclosed Structures

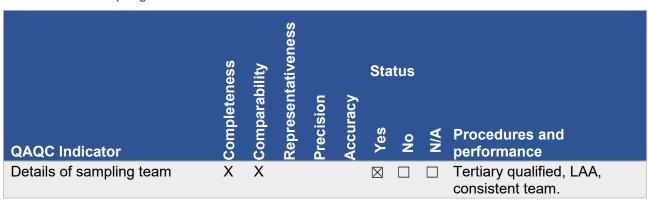

The internal methane testing for enclosed structures within 250m of the landfill during the Q2 2025 monitoring period DID NOT detect any levels of methane above the EPA license limits of 1% V/V. The results were considered satisfactory.

9 Flare Operations Results

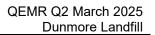
Weekly average operating temperatures for the flare were supplied by LGI and displayed typical variation associated with a continuous process. Results are summarised in Chart 1 below. LGI Gas Flare reports included as **Appendix G**.

Weekly average operating temperatures for the Q2 2025 monitoring period supplied by LGI displayed an average temperature of 671.4 degrees Celsius. This was below the lower operation limit of 760 degrees as specified within EPL 5989. Further information is documented within the LGI reports in Appendix G.

Chart 1: Weekly Flare Operating Temperatures October 2022 – March 2025


Notes: Data sourced from the LGI reports provided in Appendix G.

10 Quality Assurance/Quality Control Data Evaluation (QAQC)


10.1 Field Sampling QAQC

ENRS understands that the sample program was completed in general accordance with the ALS standard operation procedures (SOP) which references current industry guidelines.

It was understood that the QAQC procedures and indicators for field sampling procedures within the SOP included items summarised in Table 10-1.

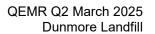


Table 10-1: Sampling QAQC Procedures

	Completeness	Comparability	Representativeness	Precision	Accuracy	Sta	tus		
QAQC Indicator	Com	Com	Repr	reci	Accu	Yes	°N N	N/A	Procedures and performance
Reference to sampling plan/method, including any deviations from it – sampling and analysis quality plan	x	0							Sampling in accordance with the SOP.
Any information that could be required to evaluate measurement uncertainty for subsequent testing (analysis)				Х	Х				Field sampling records and chain of custody completed in full.
Decontamination procedures carried out between sampling events			х	X	x				Equipment such as decontaminated between samples by washing with phosphate free detergent followed by rinsing with potable water. Re-use of sampling equipment was avoided, where possible. Single use deposable sampling equipment was the preferred method.
Logs for each sample collected, including date, time, location (with GPS coordinates if possible), sampler, duplicate samples, chemical analyses to be performed, site observations and weather/environmental (i.e. surroundings) conditions. Include any diagrams, maps, photos.		X	X						Sampling field sheets were used as required.
Chain of custody fully identifying – for each sample – the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method, departure time from the site and dispatch courier(s) (where applicable)	Х	X							COC's completed in full.

	Completeness	Comparability	Representativeness	sion	acy	Sta	Status		
QAQC Indicator	Comp	Comp	Repre	Precision	Accuracy	Yes	No	N/A	Procedures and performance
Field quality assurance/quality control results (e.g. field blank, rinsate blank, trip blank, laboratory prepared trip spike)				Х	Х				Field QAQC analysed for chemical samples – field duplicate.
Sample splitting techniques – subsampling, containers/preservation (ensure unique ID for subsequent samples provided)			Х						Samples obtained in laboratory prepared sample containers appropriate for the analytes.
Statement of duplicate frequency			Х	Х		\boxtimes			Blind field duplicates collected at 1/20 frequency
Background sample results	Х	Х				\boxtimes			Reviewed against previous results from the last 3 years.
Field instrument calibrations (when used)				Х	Х			\boxtimes	Yes field equipment was calibrated prior to use.
Sampling devices and equipment	Х	Х				\boxtimes			Manual sampling with decontamination procedures and disposable equipment.
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	Х	Х							COC's completed in full, final records from NATA laboratory attached to CoAs.

10.2 Laboratory QAQC

The QAQC procedures and indicators for laboratory analysis procedures are summarised in Table 10-2.

Table 10-2: Laboratory QAQC procedures

	Completenes	ırability	Representativ	uo	Icy	Stat	tus		
QAQC Indicator		Comparability	Repres	Precision	Accuracy	Yes	0 N	N/A	Procedures and performance
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	Х	Х							All samples were logged and transferred under appropriately completed Chain of Custody Forms.
Record of holding times and a comparison with method specifications	Х	Х							Records documented in the laboratory QAQC report attached to CoA.
Analytical methods used, including any deviations	Х	Х				\boxtimes			Recorded in the CoA.
Laboratory accreditation for analytical methods used, also noting any methods used which are not covered by accreditation	Х			Х					Recorded in the CoA.
Laboratory performance for the analytical method using inter- laboratory duplicates		Х			Х				Records documented in the laboratory QAQC report attached to CoA.
Surrogates and spikes used throughout the full method process, or only in parts. Results are corrected for the recovery	Х	Х							Records documented in the laboratory QAQC report attached to CoA.
A list of what spikes and surrogates were run with their recoveries and acceptance criteria (tabulate)		Х			Х				Records documented in the laboratory QAQC report attached to CoA.
Practical quantification limits (PQL)	Х	Х				\boxtimes			Recorded in the CoA. PQLs <sac.< td=""></sac.<>
Reference laboratory control sample (LCS) and check results	Х					\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Laboratory duplicate results (tabulate)	Х				Х	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Laboratory blank results (tabulate)	Х				Х	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Results are within control chart limits	Х								Records documented in the laboratory QAQC report attached to CoA.

	les	ility	ativ			Status			
QAQC Indicator	Completenes	Comparabilit	Representativ	Precision	Accuracy	Yes	No	N/A	Procedures and performance
Evaluation of all quality assurance/control information listed above against the stated data quality objectives, including a quality assurance/control data evaluation	X	Х	X	X	X				Records documented in the laboratory QAQC report attached to CoA.

10.3 QAQC Discussion

A summary of the Data Quality performance and evaluation is summarised in **Table 10-3** below:

Table 10-3: QAQC and Data Evaluation Summary

Objective	Performance	Status
Documentation completeness	 Completion of field records; Chain of Custody (COC) documentation; Calibration certificates for equipment; NATA Laboratory Sample Receipt Notification (SRN); and NATA laboratory Certificate of Analysis (COA). Sample Location Plans. Sample field sheets. 	✓
Precision & accuracy for sampling & analysis	 Use only trained and qualified field personnel; Calibration certificates for field equipment; Appropriate sampling and field techniques; Decontamination procedures; Achieve laboratory QC criteria; and Achieve QAQC requirements for RPDs and Recovery 	✓
Identify Anomalies	 No elevated results not expected by the CSM; No labelling or sample management errors; No laboratory analyses or reporting errors 	✓
DATA completeness	 Sampling density comparison meets NSW EPA (1995) 'Sampling Design Guidelines' for or all potential contaminants of concern at all areas of environmental concern; and Systematic and judgemental sampling to provide sufficient data representative of all AECs. 	V
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of sample media; Use of NATA certified laboratory using NEPM endorsed procedures; and Comparison with previous site information, if any. 	√

Objective	Performance	Status
Data representative ness	 Adequate sampling coverage at all points listed in the EPL. Selection of representative samples from each sampling location; & Analysis for PCoC. Achieve laboratory QC criteria. Achieve QAQC requirements for RPDs and Recovery. 	V

The laboratory was NATA accredited, and the Practical Quantitation Limits (PQL) also referred to as Limits of Reporting (LOR) were within the acceptable levels for the assessment criteria. Laboratory certificates of analysis provided in **Appendix C** indicate that for the samples collected during the scope of works, sampling techniques, transport procedures and laboratory analysis were satisfactory

In summary, the QA/QC indicators all complied with the ALS standards or showed variations that would have no significant effect on the quality of the data or the conclusions of this assessment. Based on the following conclusions it is therefore determined that, for the purposes of this study, the QA/QC results are valid, and *the quality of the data is acceptable for use in this assessment:*

- > The data was representative of site conditions;
- The data was complete with comprehensive records available from all field work undertaken, and all areas of concern sampled and analysed;
- The data was comparable for samples analysed at different times, and consistent with field observations; and
- The data was precise and accurate based on the laboratory achievement of relevant quality control criteria.

11 Quarterly Environmental Assessment

11.1 Monitoring Point Summary

Based on the results of field measurements and NATA laboratory results conducted by ALS, the following summaries were noted for the Q2 2025 monitoring period;

- Groundwater monitoring wells located across the site reported elevated concentrations of key indicators of leachate above the site assessment criteria, specifically ammonia. Groundwater wells were located across the Site including upgradient, adjacent to and downgradient of the landfill cells. The elevated results were generally consistent with the available historical data;
- Out of all the groundwater monitoring well locations, monitoring point BH1c reported the highest concentrations analytes associated with leachate. Results have historically remained elevated and in exceedance of the SAC;
- The leachate tank LP1 reported elevated results of key leachate analytes which was considered to be characteristic of untreated leachate;
- Onsite surface water dam SWP1 generally reported results within the Site Assessment Criteria with no significant changes;
- Offsite surface water of Rocklow Creek generally reported conditions characteristic of a tidal river system. Concentrations of key analytes associated with landfill leachate within the creek were generally reported below adopted the ecological protection trigger values. However,

concentrations of ammonia were reported above the ecological stressor value at each sample point;

- > Dust monitoring reported minor exceedances at DDG4;
- Surface gas monitoring did not detect any methane above the allowable limit across the site surface transects or within onsite buildings;
- > No overflow events occurred during the quarterly monitoring period; and
- Review of the gas flare reports prepared by LGI reported gas flare temperatures below the minimum requirement of 760 degrees Celsius as specified within EPL 5984.

11.2 Environmental Management

11.2.1 Landfill Operations

ENRS understand 'solid' waste (general solid waste putrescible and non-putrescible) landfill operations are ongoing at the Site. Landfill practices should be conducted in accordance with the Site's Landfill Environmental Management Plan (LEMP) and the EPA Solid Waste Landfill Guidelines (EPA; 2016).

11.3 Environmental Safeguards

Appropriate management actions are required to continue to prevent and detect potential groundwater and surface water pollution. The nearest sensitive receptors for any uncontrolled Site water and leachate include; areas of adjoining bushland; recreational users of the Minnamurra River estuary environs, down gradient stakeholders; and down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE).

It is recommended that any drainage and detention structures are inspected annually by a suitably qualified environmental professional to assess their structural integrity and identify the need for any maintenance (such as removal of deep rooted vegetation, sediment, and re-lining).

Access tracks to sampling points should be inspected and maintained prior to each quarterly sampling events.

Continue to review surface water and groundwater monitoring results from up and down gradient of the land fill cells and offsite sampling locations within Rocklow Creek.

Ensure the integrity of the landfill cap is maintained. This is to avoid additional surface infiltration during rainfall events and the release of landfill gasses. Continue to monitor surface methane gas in order to assess the capping integrity of the landfill cells.

11.4 Monitoring Program

The Site's EPL's and monitoring regime should be reviewed annually by SCC and the NSW EPA.

Review of the quarterly monitoring results indicated no significant change in environmental conditions at the Site. Key indicators of leachate were reported within the groundwater monitoring locations across the Site. Future sampling events should continue to monitor the key indicators of leachate within ground and surface waters, especially concentration of ammonia and nitrate.

Should monitoring continue to report any significant changes in analyte concentrations the need for additional monitoring locations should be reviewed, including additional groundwater monitoring bores both up and down gradient locations of areas with analytical exceedances.

It is recommended that water quality results from future monitoring rounds continue be forwarded to a suitably qualified environmental professional for review within the laboratory holding time to compare against relevant guidelines and identify any irregularities so that additional testing may be conducted within the sample holding time.

12 Conclusions

Based on the findings obtained during this quarterly monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. Depth to groundwater was <5mBGL. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the quarterly monitoring period reported exceedances above the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within groundwater wells across the Site. The analytes were considered to be key indicators of leachate. The exceedances were within range of historical values with no significant changes in concentrations;
- Offsite sample locations within Rocklow Creek generally reported concentrations of analytes below the SAC. However, concentrations of ammonia were reported above the ecological stressor value;
- Surface gas methane monitoring of the landfill cap reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges generally recorded satisfactory results below the guidelines provided in AS3580.10.1. A minor exceedance was reported in dust gauge DDG4. The potential source of the dust should be reviewed by the client. Monitoring should continue in accordance with EPL 5984 requirements;
- > Gas Flare temperatures were reported below the required KPI of 760 degrees Celsius;
- Based on the data reviewed for the quarterly monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses were present within groundwater and consistent with the historical data;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

13 References

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

- CRC Care (2011). Health screening levels for petroleum hydrocarbons in soil and groundwater.
- DEC NSW. (2007). Guidelines for the Assessment and Management of Groundwater Contamination.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council, May.

NSW EPA. (2014). Waste Classification Guidelines. Part 1 Classifying Waste.

NSW EPA. (2020). Guidelines for consultants reporting on contaminated land.

- NSW EPA (2022) Approved methods for the sampling and analysis of water pollutants in NSW
- NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling design part 1: Application .
- NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling Design Part 2: Interpretation.
- WA DOH. (2009). *Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia*. Perth, WA: Western Australia Department of Health.
- WA DOH. (2021). Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia. Perth, WA: Western Australia Department of Health.

Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales

NSW EPA (Mar. 2020) Environmental Protection Licence (EPL) 5984

NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903

NSW Government (1997). Protection of the Environment Operations Act.

NSW Government (2005). Protection of the Environment (Waste) Regulation.

NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B – Waste Landfills.

ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.

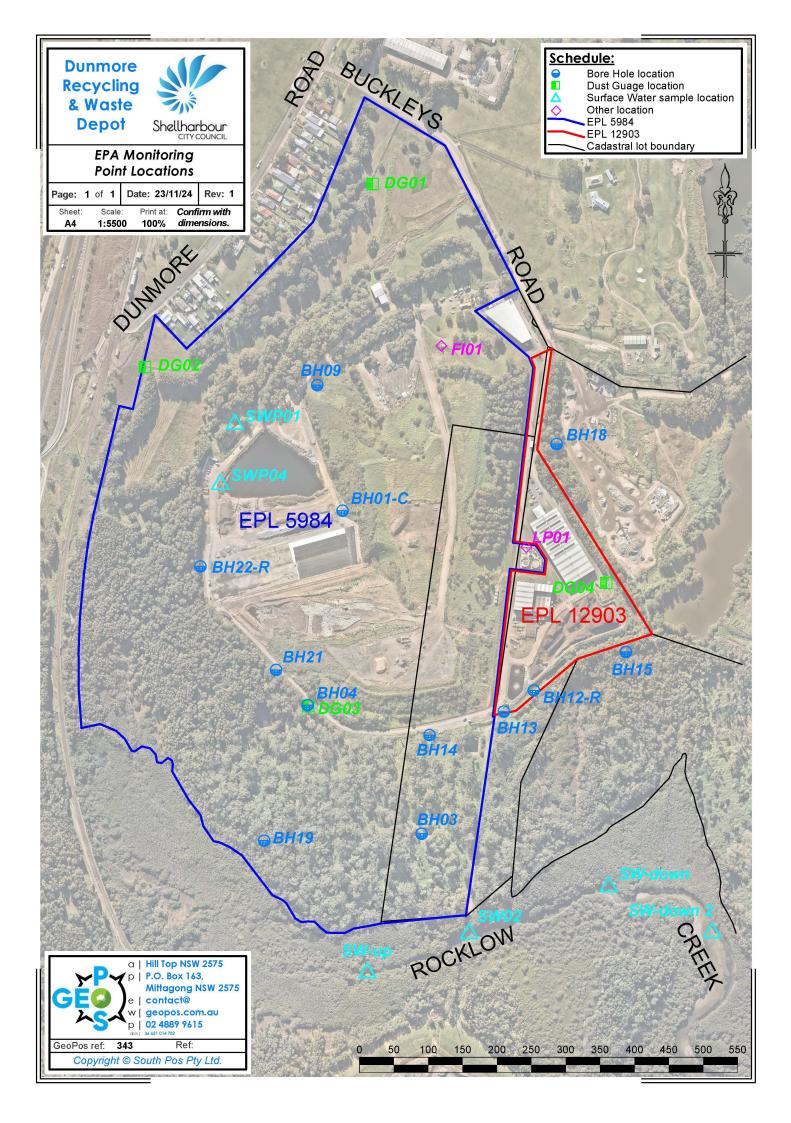
ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council. ISBN 09578245 0 5 (set).

14 Limitations

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to Site.

ENRS derived the data in this report primarily from visual inspections, and, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e. the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.


The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of Site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g. changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.

FIGURES

ENRS	Client:	Shellharbour City Council	Drawn:	PL	Figure:	3
Environment & Natural Resource Solutions	Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
	Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Surface Gas
108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535 Tel: 02 4448 5490 Fax: 02 90374708 projects@enrs.com.au www.enrs.com.au		44 Buckleys Rd, Dunmore, NSW, 2529	Status:	Rev 1	1	Sample transects
		2329				

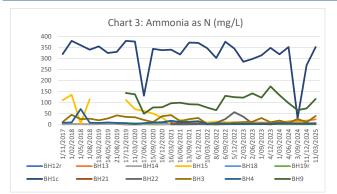
TABLES OF RESULTS

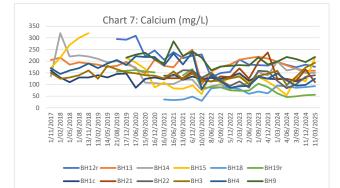
								Qı	uarterly V							n Result Recycling		ste Depo	t										
GILs -Trigger Values for I	Trigger Values for Freshwater (Protection of 95% of Species) A 1.9 - 1.9 - 0.9 (pH 8) - 0.7 - 0.9 (pH 8) - 0.7																												
GILs -Trigger Values for I	Marine Water (Protection o	f 95% of Species) ^A			-	-	-	-	-	-	-	-	-	0.91 (pH 8)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Australian Drinking Wate	r Guidelines (2018) ^C			Health	-	-	-	-	-	0.5	-	-	1.5	-	3	50	-	-	-	-	-	-	-	-	6.5 - 8.5	-	-	-	
			1	Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-		250	-	-		5	6.5 - 8.5	-	-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	C hloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	N itrite as N	Nitrato as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Suffate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Н	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
			•	Units Laboratory PQL		mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl 0.01	-
EW2501281001	BH1c	Groundwater	3	Mar 2025	812				226	0.10		10.10	0.3	352.00	< 0.01	< 0.01	160	2,780	2,780	< 1					7.00	6,980	25.4	3.50	-
EW2501281002	ВНЗ	Groundwater	5	Mar 2025	294	193			51	0.24		0.96	0.2	38.50	< 0.01	< 0.01	36	700	700	159					7.00	2,250	18.5	3.33	-
EW2501281003	BH4	Groundwater	6	Mar 2025	43	125			43	0.14		3.58	0.1	2.75	< 0.01	< 0.01	12	409	409	124					7.20	1,040	19.0	4.59	-
EW2501281004	BH9	Groundwater	18	Mar 2025	369	218			72	0.78		0.39	0.4	116.00	0.07	0.32	65	1,890	1,890	< 10					7.00	3,880	18.8	3.67	-
EW2501281005	BH12r	Groundwater	17	Mar 2025	204	176			29	0.46		16.60	0.2	4.74	< 0.01	0.01	35	590	590	50					6.90	1,630	21.6	4.63	-
EW2501281006	BH13	Groundwater	10	Mar 2025	274	159			33	0.55		5.00	0.2	23.20	0.02	0.40	42	888	888	35					6.90	2,260	22.0	4.57	-
EW2501281007	BH14	Groundwater	11	Mar 2025	105	150			19	0.29		3.25	0.6	2.54	< 0.01	0.18	20	594	594	59					6.80	1,330	21.2	5.02	-
EW2501281008	BH15	Groundwater	7	Mar 2025	1,490	217			178	0.45		11.60	0.2	5.30	< 0.01	0.07	24	256	256	377					6.80	6,090	19.9	0.86	-
EW2501281009	BH18	Groundwater	25	Mar 2025	32	93			55	0.07		0.98	0.1	1.24	< 0.01	0.03	8	338	338	70					7.20	779	19.0	4.73	-
EW2501281010	BH19r	Groundwater	16	Mar 2025	13	56			8	0.07		1.50	0.2	0.81	< 0.01	< 0.01	11	222	222	< 1					6.60	414	21.3	2.69	-
EW2501281011	BH21	Groundwater	23	Mar 2025	230	110			20	0.12		2.73	0.5	5.86	< 0.01	< 0.01	26	643	643	155					7.10	1,930	19.5	2.80	-
EW2501281012	BH22	Groundwater	24	Mar 2025	304	140			17	0.45		1.40	0.4	3.64	< 0.01	< 0.01	33	796	796	218					7.20	2,440	22.7	3.43	-
EW2501285001	SWP1	Surfacewater	1	Mar 2025	148	53	36	185	5	0.04	< 0.05	0.10	0.4	0.04	< 0.01	0.04	24	412	412	72	5.23	60.7	7	3.80	7.70		23.3		-
EW2501285003	SWC_up	Surfacewater	20	Mar 2025	11,200	335	920	7,230	272		0.49	< 0.10	0.8	0.46	0.01	0.01	8	222	222	2,060	4.43	58.5	< 5	4.40	7.20				-
EW2501285002	SWC_2	Surface Water	19	Mar 2025		354			307		0.26	< 0.10	0.7	0.39	0.01	0.01	7			2,530	3.22	43.4	< 5		7.20				-
EW2501285004	SWC_down	Surfacewater	21	Mar 2025	13,400	381	1,110	8,810	333		0.34	< 0.10	0.8	0.47	0.01	0.06	6	185	185	2,420	4.24	58.7	< 5	4.00	7.30				
EW2501285005	SWC_down_2	Surfacewater	22	Mar 2025	13,500	392	1,120	9,070	342		0.20	< 0.10	0.8	0.34	0.01	0.04	6	175	175	2,500	3.81	53.4	< 5	2.70	7.30				-
EW2501286001	Leachate Storage Tank LP1	Leachate	2	Mar 2025	1,090	127			286	0.06	0.92		0.3	0	< 0.10	453.00	217	454	475	< 10	7.00	85.1			8.40		25.0		-

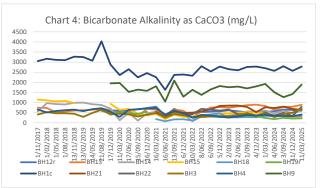
				рН		Assessme	ent Criteria	Result	
Ammonia Resu		against the pH Modified T C (2000) Table 8.3.7		(lab)	Ecological Stressor Value	pH Modifed Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonal As N	Comment
Lab Report No.		Total Sample ID.	Concentrations - PQL Date	0.1	-	-	-	0.01	
EW2501281001		BH1c	11/03/2025	рН 7.00	mg/L	mg/L 2.18	mg/L 3.91	mg/L 352.00	> TV
EW2501281002		BH3	11/03/2025	7.00		2.18	3.91	38.50	> TV
EW2501281003		BH4	11/03/2025	7.20		1.99	3.20	2.75	> TV
EW2501281004		ВН9	11/03/2025	7.00		2.18	3.91	116.00	> TV
EW2501281005		BH12r	11/03/2025	6.90		2.26	4.24	4.74	> TV
EW2501281006	Groundwater	BH13	11/03/2025	6.90		2.26	4.24	23.20	> TV
EW2501281007	Groundwater	BH14	11/03/2025	6.80		2.33	4.55	2.54	> TV
EW2501281008		BH15	11/03/2025	6.80		2.33	4.55	5.30	> TV
EW2501281009		BH18	11/03/2025	7.20	0.20	1.99	3.20	1.24	> TV
EW2501281010		BH19r	11/03/2025	6.60		2.43	5.07	0.81	> TV
EW2501281011		BH21	11/03/2025	7.10		2.09	3.56	5.86	> TV
EW2501281012		BH22	11/03/2025	7.20		1.99	3.20	3.64	> TV
EW2501285001	Onsite Dam	SWP1	12/03/2025	7.70		1.18	1.32	0.04	<tv< td=""></tv<>
EW2501285003		SWC_up	12/03/2025	7.20		1.99	3.20	0.46	< TV
EW2501285002	Rocklow Creek	SWC_2	12/03/2025	7.20		1.99	3.20	0.39	< TV
EW2501285004	Surface Water	SWC_down	12/03/2025	7.30		1.88	2.84	0.47	>TV
EW2501285005		SWC_down_2	12/03/2025	7.30		1.88	2.84	0.34	>TV

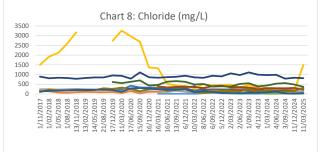
TABLE 14-2: Ammonia Results March 2025 Quarter 2: Dunmore Recycling and Waste Depot

TABLE 14-3: Duplicate Groundwater Sample Results and QCData


Lab Report No.				EW2501281009	EW2501281013	
Sample No.				BH18	GWDuplicate	
Sample type				Groundwater	GWQC	RPD
EPA No,				25	QC1	RPD
Date Sampled				12/03/2025	12/03/2025	
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	32	13	84.44
Calcium	mg/L	1	5	93	57	8.00 😵
Potassium	mg/L	1	5	55	8	😵 149.21
Manganese	mg/L	0.001	0.005	0.071	0.070	1.42
Dissolved Iron	mg/L	0.05	0.25	0.98	1.51	8 42.57
Fluoride	mg/L	0.1	0.5	0.10	0.20	66.67
Ammonia as N	mg/L	0.01	0.05	1.24	0.80	😣 43.14
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrate as N	mg/L	0.01	0.05	0.03	< 0.01	8 100.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	0.03	< 0.01	8 100.00
Total Organic Carbon	mg/L	1	5	8	10	22.22
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	338	223	8 41.00
Total Alkalinity as CaCO3	mg/L	1	5	338	223	😣 41.00
Sulfate as SO4 - Turbidimetric	mg/L	1	5	70	< 1	😣 194.37
рН	рН	0.01	0.05	7.20	6.50	10.22
Electrical Conductivity (Non Compensated)	µS/cm	1	5	779	415	8 60.97
Temperature	°C	0.1	0.5	19.0	21.3	11.41
Standing Water Level	mbgl	-		4.73	2.69	🔇 54.99


TABLE 14-4: Duplicate Surface Water Results and QC Data


Lab Report No.				#N/A	EW2501285006	
Sample No.				SWC_2	SWDuplicate	
Sample type				#N/A	OffSiteSWQC	
EPA No,				#N/A	QC2	RPD
Date Sampled				12/03/2025	12/03/2025	
Analyte	Units	PQL	5 x PQI	Result	Result	
Calcium	mg/L	1	5	354	384	8.13
Potassium	mg/L	1	5	307	333	8.13
Total Iron	mg/L	0.05	0.25	0.26	0.28	7.41
Dissolved Iron	mg/L	0.05	0.25	< 0.10	< 0.10	0.00
Fluoride	mg/L	0.1	0.5	0.7	0.8	13.33
Ammonia as N	mg/L	0.01	0.05	0.39	0.41	S .00
Nitrite as N	mg/L	0.01	0.05	0.01	0.01	0.00
Nitrate as N	mg/L	0.01	0.05	0.01	0.01	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	0.02	0.02	0.00
Total Organic Carbon	mg/L	1	5	7	6	15.38
Sulfate as SO4 - Turbidimetric	mg/L	1	5	2,530	2,530	0.00
Dissolved Oxygen	mg/L	0.01	0.05	3.22	3.21	Ø.31
рН	pН	0.01	0.05	7.20	7.20	0.00



CHARTS

BH12r ----- BH13 ----- BH14 ----- BH15 ----- BH18 ----- BH19r

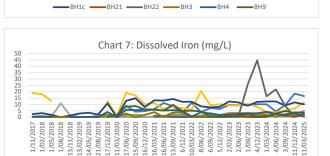
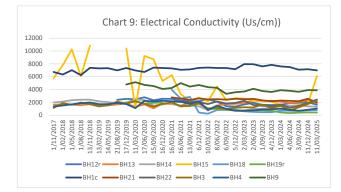
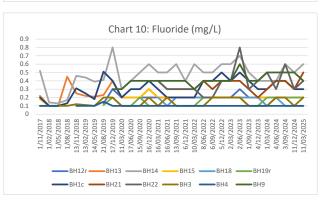
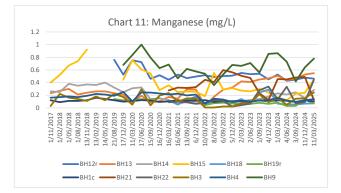
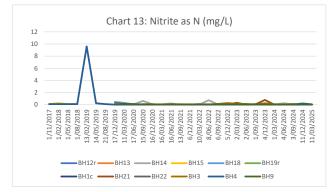
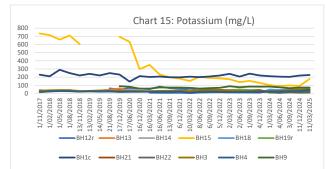
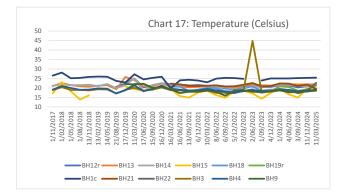




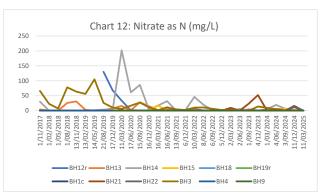
Chart 6: Depth to Water (mbgl TOC) 25 20 15 10 5 0 13/02/2019 14/05/2019 17/12/2019 17/12/2019 17/12/2019 11/05/2020 15/06/2021 15/06/2021 15/06/2021 15/06/2021 15/06/2022 16/02/2021 15/06/2022 10/02/2023 4/12/2023 1/09/2023 4/12/2023 1/09/2023 4/12/2024 11/12/2024 11/12/2024 11/12/2024 1/11/2017 1/02/2018 1/05/2018 1/08/2018 13/11/2018 BH12r - BH13 BH14 BH15 BH18 BH19r BH1c -BH21 -BH22 -BH3 -BH4 -BH9

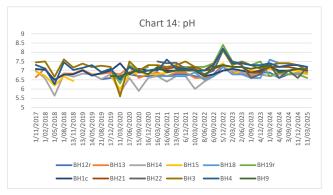


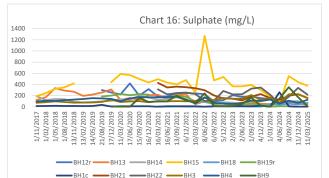


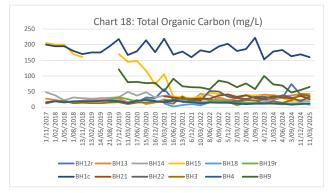

BH12r - BH13 BH14 BH15 BH18 BH19r

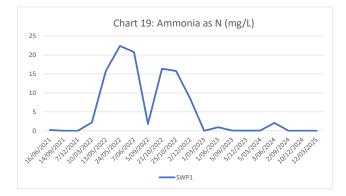

BH1c -BH21 -BH22 -BH3 -BH4 -BH9

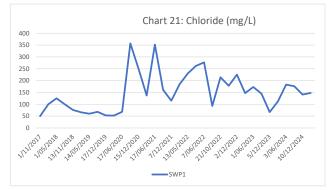

Charts 3-18: Groundwater Charts

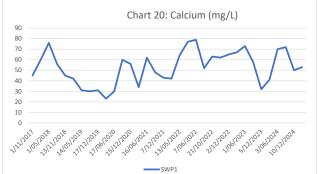


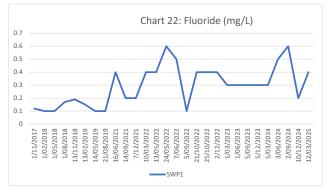


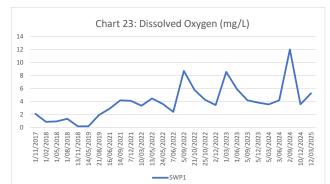


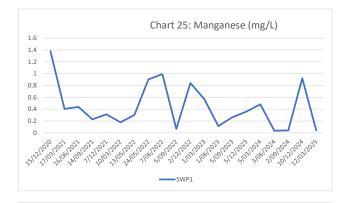


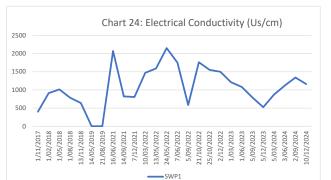


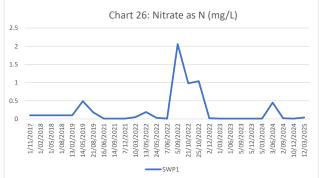


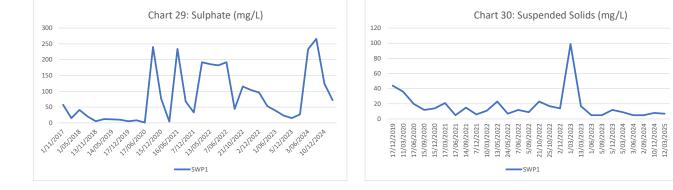


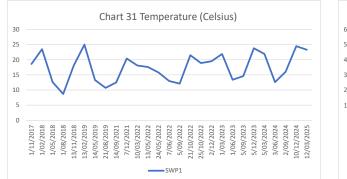

Charts 19-34: Onsite Surface Water Charts

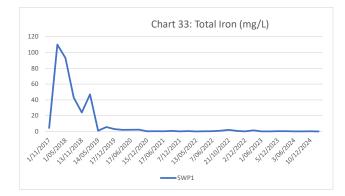


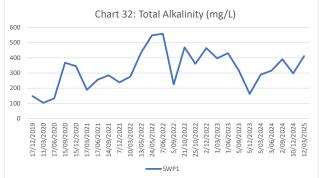


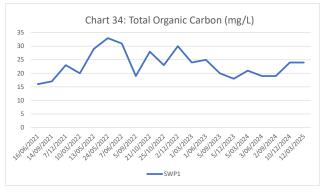


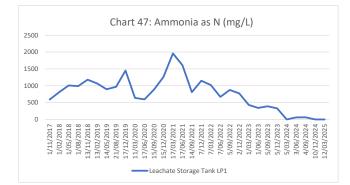


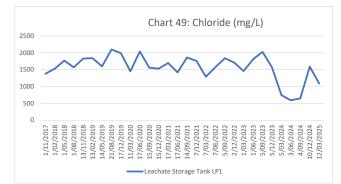


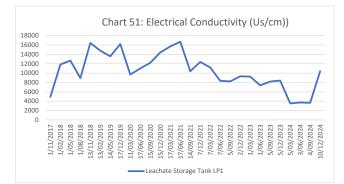


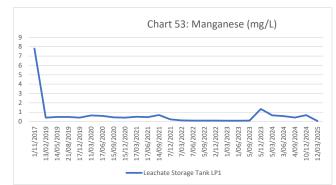


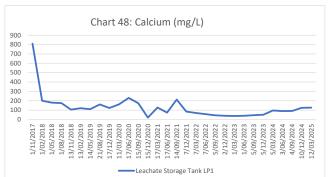


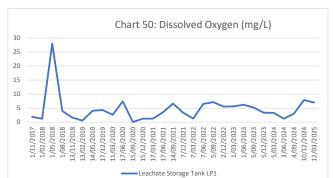


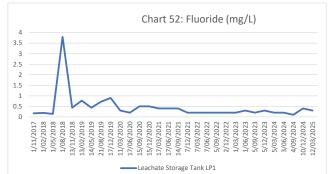


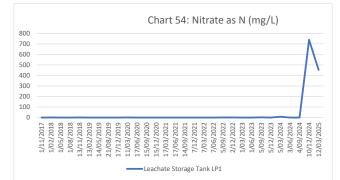


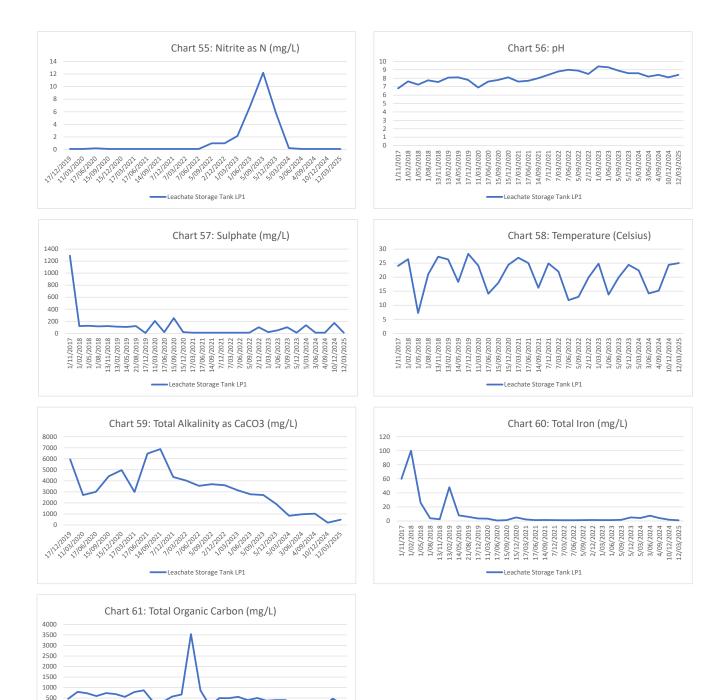



Charts 47-61 Leachate Water Quality Charts









0

1/11/2017 1/02/2018

1/05/2018 1/08/2018

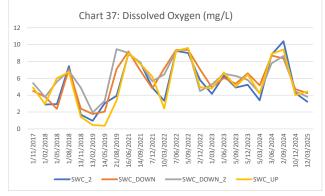
13/11/2018 13/02/2019

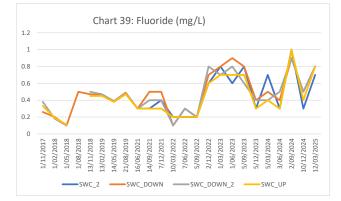
14/05/2019

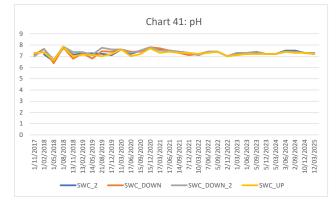
21/08/2019 17/12/2019 11/03/2020 17/06/2020 15/09/2020 15/12/2020 15/12/2020 17/03/2021 17/06/2021

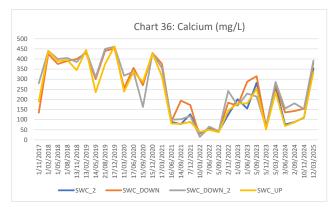
14/09/2021 7/12/2021 7/03/2022 7/06/2022 5/09/2022 2/12/2022 1/03/2023 1/06/2023

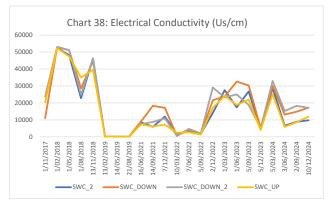
Leachate Storage Tank LP1

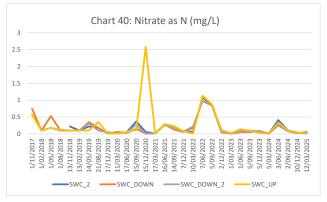

5/09/2023 5/12/2023 5/03/2024

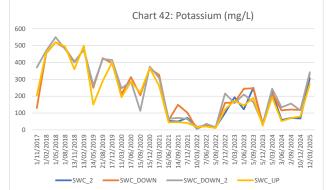

3/06/2024 4/09/2024

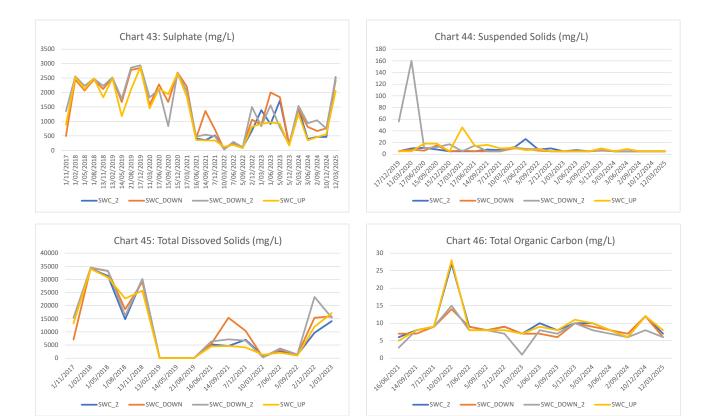

10/12/2024 12/03/2025


Charts 35-46: Rocklow Creek Surface Water Charts









APPENDICES

Appendix A: EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022. Updated 18/03/2025)

2	Leachatemonitoring	Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring	BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring	BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring	BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring	BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring	BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring	BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring	BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring	BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA

		Ref. no. DOC19/1027702).
18	Groundwater monitoring	BH9 - as shown on the drawing
		titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
19	Surface Water Monitoring	SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
20	Surface Water Monitoring	SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
21	Surface Water Monitoring	SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
22	Surface Water Monitoring	SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
23	Groundwater Monitoring	BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
24	Groundwater monitoring	BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
25	Groundwater monitoring	BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).

Appendix B: Laboratory Chain of Custody (COC) & Certificates of Analysis

(COA) – Water Samples

-	Mandatory Fields					CHAI	NOF	CU:	STOD	Y	_				1			Pageof			*		
CLIENT CODE:	SHECIT	*PROJECT MANAGER:		Ryan S	itirling				SAM	MPLER:			SAM	PLED E	Y ALS			газ	Je	01			
*CLIENT:	Shellharbour City Council	*PM MOBILE:			d.					MPLER			02	4225 3	125			Co	oC #:∫∉app	(icabile)	1	AL	3
OFFICE: (Invoiced Office)	Shellharbour	ALS QUOTE # (Client PL if black)		WO/030/1	9 TEND	ER			PUR	CHASE				156810						9			
PROJECT	Dunmore Quarterly Ground Waters E	PL								SITE:			C	unmo	re		1			ei k			
INVOICE TO:	Financial@shellharbour.nsw.gov.au																voice to PM			BIOSE			
EMAIL REPORTS TO:	Ryan.stirlingshellharbour.ns	w.gov.au, Glenn.h	oldenshell	harbour.nsw.g	ov au,		1			-			REQUIRE			H.		Count	try of Orio	.io			1
(default to PM if blank)	Mitchell.copasshe	linarbour.nsw.gov	.au, labwer	nrs.com.au			Who Mark an	ere Metal:	are requir	ed, specif	y Total (unf	filtered bot	es must be list tile required) e s parameter	r Dissolved	(feld filtered	bottie requ	ired) t samplo,	E	nviror	nment	tal D	ivisi	on
Please Standard Storage sa Water	REQUIREMENTS Standard Sto check box → Extended Sto the line incomeccipt of mples: Specify Disposal Date: s - 3 weeks 2 months Note: Extended storage incurs a requires a signed agreement	orage (Not all tests of contact Client info	LAROUND check box → can be expedited Services for mor mation)	 5+ day 3 day (2 day (1 day (+15%) +30%)	charge)												vv	EV	gong Order V25	Refer	^{rence} 128	31
inner is.) Water(W) Sediments D), Product (P), Biola (B),	Ammonia NT-04 (NO2 & NO3)		(Alka, So4, Cl, Fl) I Ca, K	Dissolved Fe & Mn	d Tests EC, Temp & SWL	Ë								: 02 4225	3125	ž	
i Use niy b ID	Sample ID	Sample ID Depth			Date/Time Software (150) / 101 (101) Date/Time Software (150) / 101 (101) Date/Time Software (130) / 101 (101) Date/Time Software (130) / 101 (131) /			TOC	NT-2A (Alka, Filtered Ca, K	Dissolv	Field Tests pH, EC, Terr	Send to					_	Lab (addiu bottles Dup	tional	Comment on	n hazards	Information - e.g., asb amination)	pestos, kr
	BH1C	8	11.3.	25 10	29	w	X	х	х	Х	х									14.5		*	
	BH3			1 13.27		w	X	Х	Х	Х	х												
	BH4			13:55	4	w	X	Х	х	Х	х												
	BH9			10:10	4	w	Х	Х	Х	Х	х												
	BH12R			112:09	4	w	X	Х	Х	Х	х												
	BH13			12:27	. 4	w	X	х	х	х	х												
	BH14			12:55	4	w	X	х	Х	х	х												
	BH15			11:50	4	w	x	х	х	х	x												
	BH19R			13:40	94	w	X	Х	Х	Х	х												
	BH18			9:2-	4	w	X	х	х	х	х												
	BH21			111:20	, 4	w	X	х	х	Х	Х												
	BH22			11:00	54	w	X	х	х	х	х												
-	Duplicate		1	19:2	74	w	x	х	х	х	х									1.5		•.	
	Triplicate			V 912	74	w	-					X									ul		
							-				Carrier						P	ackaoin	igt	Hard Esky		1	Box/Bag
ceipt etail Chi b Use Met NLY)	ice: ice.Bricks	None Sample Temp 97	5 ~ 8	9-10	5.0	Security Seal Intect (circle)			/ NA(N		Details Con Not	1 <i>4</i> 7 #	C C4	1006011035				ackagin Circle) Jount	~*	That'd Esky	#	n⊢sky I #) ;

ENFM (204/17)

Approved Date: 13/02/2024

CERTIFICATE OF ANALYSIS

Work Order	EW2501281	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone		Telephone	: 02 42253125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 11-Mar-2025 15:40
Order number	: 166321	Date Analysis Commenced	: 11-Mar-2025
C-O-C number	:	Issue Date	: 24-Mar-2025 12:23
Sampler	: Robert DaLio		Iac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: EW24SHECIT0001 (RFT 2024/81) Tender		
No. of samples received	: 14		Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ED041G: LOR raised for Sulfate on sample 4 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling High Flow and Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	11-Mar-2025 10:29	11-Mar-2025 13:22	11-Mar-2025 13:55	11-Mar-2025 10:10	11-Mar-2025 12:09
Compound	CAS Number	LOR	Unit	EW2501281-001	EW2501281-002	EW2501281-003	EW2501281-004	EW2501281-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	7.0	7.2	7.0	6.9
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	6980	2250	1040	3880	1630
EA116: Temperature								
Temperature		0.5	°C	25.4	18.5	19.0	18.8	21.6
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2780	700	409	1890	590
Total Alkalinity as CaCO3		1	mg/L	2780	700	409	1890	590
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	159	124	<10	50
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	812	294	43	369	204
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	122	193	125	218	176
Potassium	7440-09-7	1	mg/L	226	51	43	72	29
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.101	0.244	0.138	0.779	0.462
Iron	7439-89-6	0.05	mg/L	10.1	0.96	3.58	0.39	16.6
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	0.2	0.1	0.4	0.2
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	352	38.5	2.75	116	4.74
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	0.07	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	11-Mar-2025 10:29	11-Mar-2025 13:22	11-Mar-2025 13:55	11-Mar-2025 10:10	11-Mar-2025 12:09
Compound	CAS Number	LOR	Unit	EW2501281-001	EW2501281-002	EW2501281-003	EW2501281-004	EW2501281-005
				Result	Result	Result	Result	Result
EK058G: Nitrate as N by Discrete A	nalyser - Continued							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	0.32	0.01
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	0.39	0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	160	36	12	65	35
QWI-EN 67.11 Sampling of Groundw	vaters							
Standing Water Level		0.01	m AHD	3.50	3.33	4.59	3.67	4.63

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	11-Mar-2025 12:27	11-Mar-2025 12:55	11-Mar-2025 11:50	11-Mar-2025 13:40	11-Mar-2025 09:27
Compound	CAS Number	LOR	Unit	EW2501281-006	EW2501281-007	EW2501281-008	EW2501281-009	EW2501281-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.9	6.8	6.8	7.2	6.6
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	2260	1330	6090	779	414
EA116: Temperature								
Temperature		0.5	°C	22.0	21.2	19.9	19.0	21.3
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	888	594	256	338	222
Total Alkalinity as CaCO3		1	mg/L	888	594	256	338	222
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA					·		
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	35	59	377	70	<1
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	274	105	1490	32	13
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	159	150	217	93	56
Potassium	7440-09-7	1	mg/L	33	19	178	55	8
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.548	0.285	0.448	0.071	0.070
Iron	7439-89-6	0.05	mg/L	5.00	3.25	11.6	0.98	1.50
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.6	0.2	0.1	0.2
K055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	23.2	2.54	5.30	1.24	0.81
K057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.02	<0.01	<0.01	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18	
		Sampli	ng date / time	11-Mar-2025 12:27	11-Mar-2025 12:55	11-Mar-2025 11:50	11-Mar-2025 13:40	11-Mar-2025 09:27	
Compound	CAS Number	LOR	Unit	EW2501281-006	EW2501281-007	EW2501281-008	EW2501281-009	EW2501281-010	
				Result	Result	Result	Result	Result	
EK058G: Nitrate as N by Discrete	Analyser - Continued								
Nitrate as N	14797-55-8	0.01	mg/L	0.40	0.18	0.07	0.03	<0.01	
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	lyser							
Nitrite + Nitrate as N		0.01	mg/L	0.42	0.18	0.07	0.03	<0.01	
EP005: Total Organic Carbon (TO	;)								
Total Organic Carbon		1	mg/L	42	20	24	8	11	
QWI-EN 67.11 Sampling of Ground	lwaters							·	
Standing Water Level		0.01	m AHD	4.57	5.02	0.86	4.73	2.69	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate		
(Sampli	ng date / time	11-Mar-2025 11:20	11-Mar-2025 11:00	11-Mar-2025 09:27		
Compound	CAS Number	LOR	Unit	EW2501281-011	EW2501281-012	EW2501281-013		
				Result	Result	Result		
EA005FD: Field pH								
рН		0.1	pH Unit	7.1	7.2	6.5		
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	µS/cm	1930	2440	415		
Compensated)								
A116: Temperature Temperature		0.5	°C	19.5	22.7	21.3		
		0.5	0	13.5	22.1	21.5		
ED037P: Alkalinity by PC Titrator		1						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	643	796	223		
Total Alkalinity as CaCO3		1	mg/L	643	796	223		
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	155	218	<1		
ED045G: Chloride by Discrete Analyse	ər					·		
Chloride	16887-00-6	1	mg/L	230	304	13		
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	110	140	57		
Potassium	7440-09-7	1	mg/L	20	17	8		
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.121	0.445	0.070		
Iron	7439-89-6	0.05	mg/L	2.73	1.40	1.51		
EK040P: Fluoride by PC Titrator					·	·	·	·
Fluoride	16984-48-8	0.1	mg/L	0.5	0.4	0.2		
EK055G: Ammonia as N by Discrete A	nalyser					·	·	· ·
Ammonia as N	7664-41-7	0.01	mg/L	5.86	3.64	0.80		
EK057G: Nitrite as N by Discrete Anal	lyser					·	·	·
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01		
EK058G: Nitrate as N by Discrete Ana	lyser				·			

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	11-Mar-2025 11:20	11-Mar-2025 11:00	11-Mar-2025 09:27	
Compound	CAS Number	LOR	Unit	EW2501281-011	EW2501281-012	EW2501281-013	
				Result	Result	Result	
EK058G: Nitrate as N by Discrete Analys	ser - Continued						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	26	33	10	
QWI-EN 67.11 Sampling of Groundwater	s						·
Standing Water Level		0.01	m AHD	2.80	3.43	2.69	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

Mandatory Fields		CHAIN OF CUSTODY																			
CLIENT CO	DDE:	SHECH	*PROJECT		Ryan S	tirling				SA	MPLER:			SA		BY ALS		Pageof			
*CLIE	INT: Shellhark	our City Council	*PM MOBILE:				-				MPLER			0	2 4225 3	3125		CoC #;	(if applicable)		
OFFI (Invoiced Off			S QUOTE # et PL if blank)		WO/030/1	9 TENDI	R		_	PUR	CHASE ER NO.:				15681	0					
PROJI NO./PROJE	ECT Dunmara Quar	terly Surface Waters EPL								Gilbi	SITE:				Dunmo	ore					
*INVOICE (client default i	TO: Financial@sh	ellharbour.nsw.gov.au															voice to PM		BIOSE		
*EM REPORTS (default to F	IAIL Ryan TO:	.stirlingshellharbour.nsw.ga Mitchell.copasshellhar				jov.au,			here Metal:	s are requi	red, specif	or Analysis y Total (uni	filtered bot	es <i>must be</i> de require	<i>listed to attrac</i> I) or Disselved	it suita/quoted price) I (lield filtered bottle requi ve to be tested on that	ired)	Country of 1 (11 not Aust Enviro	nmental	Division	
P Standard Sto	AGE REQUIREMENTS Please check box. → torage time from receipt of samples: Waters - 3 weeks Soils 2 menths	Standard Storage Extended Storage Specify Disposal Date: Notv: Extended storage incurs a fee a requires a signed agreement.	Please (Not all tests of contact Client infor	HAROUND check box → an be expedited, Scrvices for more mation)	5+ days 3 day (- 2 day (- 1 day (-	+15%) +30%)	charge)			c					Temp		Environment Wollongong Work Order EW2		ngong k Order Re W25	501285	
Comments:			Debty Date/Lime Both Sodiments Soli/Solid(S) Water(W) Sodiments (190), Note (P), Predect (P), Biolas (B),					NT-2A	, NT-2A c Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	dity	NH4 & NO3 DS, TOC, Total Mn	TOC,	Field Test pH, EC, DO & 1			Telephone : 02 42263125			
Only Lab ID		Sample ID	Depth	Date	e/Time	No. Bottles	MATRIX Soil/Soli (SD), Du Biosolid	TSS	NT-1, (lonic	TOC,	Disso	Turbidity	NH3, NH4	TSS, TDS,	Field		b	additional ottles req.) up MS	(Comment or	hazards - e.g., asbestos, known igh contamination)	
		SWP1		12.3.25	5 11:25	4		X	x	Х	х	х			x		[
		SWC_2		1	12:37			0	х		х		Х	х	х		[
		SWC_UP			12:52				х		х	Х	х	х	x		1				
	SV	VC_DOWN			13:15				x		Х	Х	Х	Х	X		1				
	SW	C_DOWN_2			13:27				X		х	х	х	х	x		1				
	C	Duplicate		5	12:37				Х		Х	х	Х	х	x		1				
																	[
																	[
																	1				
																	Ι				
ONLY)	Ice: Chilling Method: Frozen / Melta	<u> </u>	ne Sample Temp at Receipt	5.5.5.	6 ~ 5-	-	Security Seal Intact (circle)	Yes	/ No	C	lone	Carrier Details Con Not	e #		Courier/Post	ALS	Chent ICit	kaging: cle) unt	Hard Esky	Foam Esky Box/Bag/Other # #	
Remuished by Relinquished by	vt war,	-) Signature: Signature:	12	_ · ·	Date/ Time: Dato/ Time:	12.	5.65	•	Received	22		A	rel	~		nature	AL	9	Date/ Date/ Time:	12/3/25	

CERTIFICATE OF ANALYSIS

NSW Australia
🗍 🖌 🛉
Appreditation No. 025
Accreditation No. 825 Accredited for compliance with
ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position	Accreditation Category
Ankit Joshi Senior Chemist - Inorg	anics Sydney Inorganics, Smithfield, NSW
Dian Dao Senior Chemist - Inorg	anics Sydney Inorganics, Smithfield, NSW
Robert DaLio Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- EG020: It is recognised that total concentration is less than dissolved for some metal analytes. However, the difference is within experimental variation of the methods.
- TDS by method EA-015 various samples may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	12-Mar-2025 11:25	12-Mar-2025 12:37	12-Mar-2025 12:52	12-Mar-2025 13:15	12-Mar-2025 13:27
Compound	CAS Number	LOR	Unit	EW2501285-001	EW2501285-002	EW2501285-003	EW2501285-004	EW2501285-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.7	7.2	7.2	7.3	7.3
EA010FD: Field Conductivity								
Conductivity @ 25oC		1	µS/cm	1180	41100	35000	42600	43800
EA015: Total Dissolved Solids dried at	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		32400	27000	32700	33700
EA025: Total Suspended Solids dried	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	7	<5	<5	<5	<5
EA045: Turbidity						l 		
Turbidity		0.1	NTU	3.8		4.4	4.0	2.7
EA116: Temperature						l		
Temperature		0.5	°C	23.3				
•								
ED037P: Alkalinity by PC Titrator Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1		<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1		<1	<1	<1
-								
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	412		222	185	175
Total Alkalinity as CaCO3		1	mg/L	412		222	185	175
ED041G: Sulfate (Turbidimetric) as SO	94 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	72	2530	2060	2420	2500
ED045G: Chloride by Discrete Analyse	ər							
Chloride	16887-00-6	1	mg/L	148		11200	13400	13500
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	53	354	335	381	392
Magnesium	7439-95-4	1	mg/L	36		920	1110	1120
Sodium	7440-23-5	1	mg/L	185		7230	8810	9070
Potassium	7440-23-3	1	mg/L	5		272	333	342
	7440-09-7	I	ilig/∟	J		212		J#2
EG020F: Dissolved Metals by ICP-MS		0.05			-0.40	-0.40	-0.40	10, 10
Iron	7439-89-6	0.05	mg/L	0.10	<0.10	<0.10	<0.10	<0.10
EG020T: Total Metals by ICP-MS								

Sub-Matrix: WATER (Matrix: WATER)		Sampl	Sample ID ing date / time	SWP1 Point 1 12-Mar-2025 11:25	SWC_2 Point 19 12-Mar-2025 12:37	SWC_UP Point 20 12-Mar-2025 12:52	SWC_Down Point 21 12-Mar-2025 13:15	SWC_DOWN_2 Point 22 12-Mar-2025 13:27
Compound	CAS Number	LOR	Unit	EW2501285-001	EW2501285-002	EW2501285-003	EW2501285-004	EW2501285-005
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS	S - Continued							·
Manganese	7439-96-5	0.001	mg/L	0.042				
Iron	7439-89-6	0.05	mg/L	<0.05	0.26	0.49	0.34	0.20
EK040P: Fluoride by PC Titrator	r i li historia							·
Fluoride	16984-48-8	0.1	mg/L	0.4	0.7	0.8	0.8	0.8
EK055G: Ammonia as N by Disc	crete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.39	0.46	0.47	0.34
EK055G-NH4: Ammonium as N	by DA					·		
Ammonium as N	14798-03-9_N	0.01	mg/L		0.39	0.46	0.46	0.34
EK057G: Nitrite as N by Discret	te Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.01	0.01	0.01	0.01
EK058G: Nitrate as N by Discre	te Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.04	0.01	0.01	0.06	0.04
EK059G: Nitrite plus Nitrate as	N (NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.04	0.02	0.02	0.07	0.05
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	13.9		363	432	436
ø Total Cations		0.01	meq/L	13.8		414	502	515
ø lonic Balance		0.01	%	0.44		6.51	7.50	8.27
EP005: Total Organic Carbon (T	OC)					·	·	·
Total Organic Carbon		1	mg/L	24	7	8	6	6
EP025FD: Field Dissolved Oxyg	en							
Dissolved Oxygen		0.01	mg/L	5.23	3.22	4.43	4.24	3.81
Dissolved Oxygen - % Saturation	·	0.1	% saturation	60.7	43.4	58.5	58.7	53.4

Sampling date / bine 12-Mar.2025 12:37	Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
ReturnRetur			Sampli	ng date / time	12-Mar-2025 12:37	 	
EAADBFD: Field pHvvvvvvvvpH0.10.100.127.20.10 <td>Compound</td> <td>CAS Number</td> <td>LOR</td> <td>Unit</td> <td>EW2501285-006</td> <td> </td> <td> </td>	Compound	CAS Number	LOR	Unit	EW2501285-006	 	
pHnnnnnnnEAD10PFIGUANNNNNNNEAD10P1NNN<					Result	 	
Caltor Field Conductivity Conductivity Q 250CIII/S IM 41100IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	EA005FD: Field pH						
Conductivity 25cCInInInStimAf1100InInInInInEA015: Total Dissolved Solids (field att 04 5 *CInInInEA015: Total Dissolved Solids (field att 04 ± 2*CInInInInEA045: Total Solids (field att 04 ± 2*CInInInInInEA045: Total Missolved Solids (field att 04 ± 2*CIn	рН		0.1	pH Unit	7.2	 	
CA15: Total Dissolved Solids dried at 180 ± 5 °C Total Dissolved Solids dried at 180 ± 5 °C Total Dissolved Solids dried at 180 ± 5 °C Total Dissolved Solids dried at 180 ± 2 °C EA025: Total Suspended Solids (Sis) • 5 mg/L Solids • <td>EA010FD: Field Conductivity</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	EA010FD: Field Conductivity						
Total Disadved Solids @100°CnononononoEAD25: Total Suspended Solids dired at 104 ± 2°C	Conductivity @ 25oC		1	µS/cm	41100	 	
EA25: Total Suspended Solids dried at 104 ± 2°C Sweepended Solids (SS) Smoothed Solids (S		80 ± 5 °C					
Suspended Solids (SS)·········EAAE:·· <t< td=""><td>Total Dissolved Solids @180°C</td><td></td><td>10</td><td>mg/L</td><td>32100</td><td> </td><td> </td></t<>	Total Dissolved Solids @180°C		10	mg/L	32100	 	
EAdds: turbidity Image: Control of the second		104 ± 2°C					
Turbidity0.1NTU3.6ED037: Alkalinity pC TitratorHydroxide Alkalinity as CaCO3DMO-210:0011MrgL <in< td=""><t< td=""><td>Suspended Solids (SS)</td><td></td><td>5</td><td>mg/L</td><td><5</td><td> </td><td> </td></t<></in<>	Suspended Solids (SS)		5	mg/L	<5	 	
Coord P2: Alkalinity by PC Titrator Hydroxide Alkalinity as CaCO3 DMO-210-001 1 mg/L <1 Carbonate Alkalinity as CaCO3 3812-32-6 1 mg/L <1	EA045: Turbidity						
Hydroxide Alkalinity as CaCO3DMO-210-0011mg/L<1Carbonate Alkalinity as CaCO33812-3261mg/L188	Turbidity		0.1	NTU	3.6	 	
Carbonate Alkalinity as CaCO3 3812-3c4 I mg/L I mm mm I I I mm I I I I I I	ED037P: Alkalinity by PC Titrator						
Bicarbonate Alkalinity as CaCO3 71-52.3 1 mg/L 188	Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Total Alkalinity as CaCO3 1 mg/L 188	Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bodif G: Sulfate (Turbidimetric) als SO4 2- by DA Image Zesso Image Zesso Image Zesso Image I	Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	188	 	
Sulfate as SQ4 - Turbidimetric 14808-79-8 1 mg/L 2530	Total Alkalinity as CaCO3		1	mg/L	188	 	
Sulfate as SQ4 - Turbidimetric14808-79-81mg/L2530ED045G: Chloride by Discrete Analyser16887-00-61mg/L12600	ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Chloride 16887-0-6 1 mg/L 12600	Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	2530	 	
ED03 F: Dissolved Major Cations mg/L 384	ED045G: Chloride by Discrete Analyser						
Calcium 7440-70-2 1 mg/L 384	Chloride	16887-00-6	1	mg/L	12600	 	
Magnesium 7439-954 1 mg/L 1090	ED093F: Dissolved Major Cations						
Mgrcom Model of a location M	Calcium	7440-70-2	1	mg/L	384	 	
Potassium TH 0 E00 Im	Magnesium	7439-95-4	1	mg/L	1090	 	
EG020F: Dissolved Metals by ICP-MS Tron 7439-89-6 0.05 mg/L <0.10	Sodium	7440-23-5	1	mg/L	8730	 	
Iron 7439-89-6 0.05 mg/L <0.10	Potassium	7440-09-7	1	mg/L	333	 	
Iron 7439-89-6 0.05 mg/L <0.10	EG020F: Dissolved Metals by ICP-MS						
Iron 7439-89-6 0.05 mg/L 0.28		7439-89-6	0.05	mg/L	<0.10	 	
Iron 7439-89-6 0.05 mg/L 0.28	EG020T: Total Metals by ICP- <u>MS</u>						
EK040P: Fluoride by PC Titrator		7439-89-6	0.05	mg/L	0.28	 	
	EK040P: Fluoride by PC Titrator						

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	12-Mar-2025 12:37	 	
Compound	CAS Number	LOR	Unit	EW2501285-006	 	
,				Result	 	
EK040P: Fluoride by PC Titrator - C	ontinued					
Fluoride	16984-48-8	0.1	mg/L	0.8	 	
EK055G: Ammonia as N by Discrete	e Analyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.41	 	
EK055G-NH4: Ammonium as N by [DA					
Ammonium as N	14798-03-9_N	0.01	mg/L	0.41	 	
EK057G: Nitrite as N by Discrete A	nalyser					
Nitrite as N	14797-65-0	0.01	mg/L	0.01	 	
EK058G: Nitrate as N by Discrete A	Analyser					
Nitrate as N	14797-55-8	0.01	mg/L	0.01	 	
EK059G: Nitrite plus Nitrate as N (N	NOx) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.02	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	412	 	
ø Total Cations		0.01	meq/L	497	 	
ø Ionic Balance		0.01	%	9.38	 	
EP005: Total Organic Carbon (TOC)					1 	·
Total Organic Carbon		1	mg/L	6	 	
EP025FD: Field Dissolved Oxygen						1
Dissolved Oxygen		0.01	mg/L	3.21	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	43.4	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C (WATER) EK055G-NH4: Ammonium as N by DA

	Mandatory	Fields					CHAI	NO	F CUS	тос	Y					-		
CLIENT C	CODE:	SHECIT	*PROJECT Ryan Stirling			1			SA	MPLER:	2		SAMPLED	BY ALS	Pageof			
*CL	IENT: Shellharb	our City Council	*PM MOBILE:								AMPLER			02 4225	3125	CoC #	: (if applicable)	ALS
OF (Invoiced (FICE: Shellh		ALS QUOTE # PURCHASE PURCHASE Steere PURCHASE Steere PURCHASE Steere Purchase Steere Purchase Steere Purchase STEE				σ											
	DJECT Dummere Quar	erly Leachate EPL									SITE:			Dunmo	ore			
*INVOIC (client defau	E TO: <u>Financial@she</u>	ellharbour.nsw.gov.au													CC Invoice to PM		BIOS	ECURITY
	EMAIL Ryan.	stirlingshellharbour.nsw.g				gov.au		1						REQUIRED		Country o		
(default t		Mitchell.copasshellha	rbour.nsw.gov.	au, lab@enrs	s.com.au			Mark	Vhere Metals	s are requi	red, specif	fy Total (un	filtered bottl	a must be listed to attra e required) or Dissolved parameter listed abo	it suite/quoted price) (field filtered bottle required) we to be tested on that sample.	(if not Au	istrana)	P.
	RAGE REQUIREMENTS Please check box. → Storage time from receipt of samples: Waters - 3 weeks Soils - 2 months	Standard Storage Extended Storage Specify Disposal Date: Note: Extended storage incurs a fee is requires a signed agreement.	e	AROUND heck box → In be expedited, iervices for more hation)	 5+ day 3 day (2 day (1 day (+15%) +30%)	charge)						Temp			Envi Woll W	ronmenta ongong ork Order R W25	I Division
Comments:		μ.					MATRIX: Soli/Solid(\$) Water(W) Sediments (\$D), Dust(D), Product(P), Biota (B), Biosolid (85)	onia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K		NT-04 (NO2, NO3)	Fe & Mn	Test pH, EC, DO & 1			Teleph	one : 02 422531	
Only Lab ID	2	iample ID	Depth	Date	/Time	No. Bottles	MATRIX: Soil/Solid (SD), Dus Biosolid (Ammonia	NT-24 Filtere	TOC	NT-04	Total	Field			(additional bottles req. Dup M	(Comment o	dditional Information on hazards - e.g., asbestos, known high contamination)
	Lea	chate - LP1	12	.3.23	10:25	4	w	X	Х	Х	х	x	х]	
					0												ו	
		6															1	
																	ו	
																	כ	
																	ו	
																	1	
																	ונ	
]	
																	ו	
Receipt Detail (Lab Use ONLY)	lce: Chilling Method: Frozen / Melter	d Frozer / Thawed No	one Sample Temp at 4 Receipt	5 5	-6 5	-30	Security Seal Intact (circle)		/ No .	NAIN	None	Carrier Details Con Not	e #	Courier/Pos		Packaging: (Circle) Count	Hard Esky	Foam Esky Box/Bag/Other # #
Relinquished	bert 12a	Li's Signature:	12.3.2	23	Vene		1.		Received			A	net	۵. Sig	nature		Date/ Time	
Relinquished	by:	Signature:			Date/ Time:				Received	l by:					nature		Date/ Time	

Work Order

Client

Contact

Address

Telephone

Order number

C-O-C number

Quote number

No. of samples received

No. of samples analysed

Project

Sampler

Site

CERTIFICATE OF ANALYSIS Page : EW2501286 : 1 of 4 : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast : Ryan Stirling Contact : Aneta Prosaroski Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia : LAMERTON HOUSE, LAMERTON CRESCENT SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529 Telephone : 02 42253125 : -----: Dunmore Quarterly Leachate EPL **Date Samples Received** : 12-Mar-2025 15:46 : 166321 Date Analysis Commenced : 12-Mar-2025 Issue Date : -----: 19-Mar-2025 09:44

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

: 1

: Robert DaLio

: DUNMORE LANDFILL TENDER

: EW24SHECIT0001 (RFT 2024/81) Tender

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ED041G: LOR raised for Sulfate on sample 1 due to sample matrix.
- EK057G: LOR raised for Nitrite on sample 1 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate LP1	 	
		Sampli	ng date / time	12-Mar-2025 10:23	 	
Compound	CAS Number	LOR	Unit	EW2501286-001	 	
				Result	 	
EA005FD: Field pH						
pH		0.1	pH Unit	8.4	 	
EA010FD: Field Conductivity						
Conductivity @ 25oC		1	µS/cm	7330	 	
EA116: Temperature						
Temperature		0.5	°C	25.0	 	
ED037P: Alkalinity by PC Titrator					· ·	· ·
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	22	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	454	 	
Total Alkalinity as CaCO3		1	mg/L	475	 	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyse	ər					
Chloride	16887-00-6	1	mg/L	1090	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	127	 	
Potassium	7440-09-7	1	mg/L	286	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.061	 	
Iron	7439-89-6	0.05	mg/L	0.92	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	
EK055G: Ammonia as N by Discrete A	nalyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.18	 	
EK057G: Nitrite as N by Discrete Ana	lyser					
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Ana	lyser					
Nitrate as N	14797-55-8	0.01	mg/L	453	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate LP1	 	
		Sampli	ing date / time	12-Mar-2025 10:23	 	
Compound	CAS Number	LOR	Unit	EW2501286-001	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	453	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	217	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	7.00	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	85.1	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

Appendix C: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

CERTIFICATE OF ANALYSIS Page Work Order : EW2501287 : 1 of 3 Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast Contact : Ryan Stirling Contact : Aneta Prosaroski Address Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia : LAMERTON HOUSE, LAMERTON CRESCENT SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529 Telephone Telephone : 02 42253125 : -----Project : Dunmore Landfill Dust **Date Samples Received** : 12-Mar-2025 15:53 Order number : 166321 Date Analysis Commenced : 20-Mar-2025 C-O-C number Issue Date : -----: 25-Mar-2025 16:54 Sampler : Michael Santos Site : DUNMORE LANDFILL TENDER

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 4

: 4

: EW24SHECIT0001 (RFT 2024/81) Tender

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Thomas Regan	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

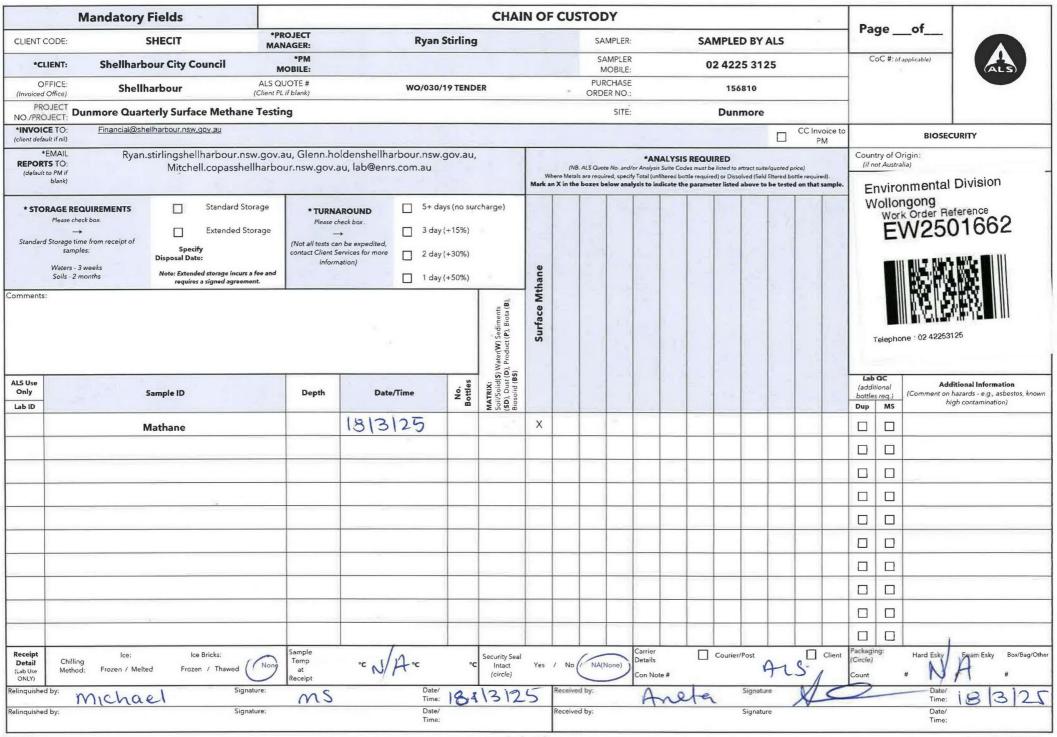
~ = Indicates an estimated value.

- Dust analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in deposition units e.g., g/m².mth where the sampling procedure is not NATA accredited.
- Sample exposure period is outside the typical exposure period of 30 +/- 2 days as per AS3580.10.1/AS3580.10.2
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Deposition Gauges.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 05/02/2025 - 12/03/2025	DDG2 05/02/2025 - 12/03/2025	DDG3 05/02/2025 - 12/03/2025	DDG4 05/02/2025 - 12/03/2025	
			ng date / time	12-Mar-2025 14:30	12-Mar-2025 13:55	12-Mar-2025 11:45	12-Mar-2025 10:30	
Compound	CAS Number	LOR	Unit	EW2501287-001	EW2501287-002	EW2501287-003	EW2501287-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.1	0.2	0.7	2.9	
Ash Content (mg)		2	mg	2	4	18	62	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.5	0.5	0.3	3.4	
Combustible Matter (mg)		2	mg	11	12	6	71	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.6	0.7	1.0	6.3	
Total Insoluble Matter (mg)		2	mg	13	16	24	133	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry / Biology).


(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

Appendix D: Surface Gas (Methane) Field Sheets

ENFM (204/17)

Form Page 1 of 1

Approved Date: 13/02/2024

			ALS Landf	fill Emissions Re	port
	Shellharbour City C Dunmore	ouncil		Date: Sampler(s)	18/03/2025 Robert DaLio, Michael Santos
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments No Safe Access Overgrown needs clearing
			I.		
В	1	6168 222	302 436	2.2	
В	2	6168 236	302 440	2.2	
В	3	6168 255	302 441	2.2	
В	4	6168 275	302 437	2.2	
В	5	6168 292	302 441	2.2	
с	1	6168 446	302 372	2.2	
с	2	6168 415	302 380	2.3	
c c	3	6168 390 6167 352	302 378 302 400	2.2	
c	*	6167 304	302 400	2.2	
с	6	6168 281	302 415	2.2	
<u>с</u>	7	6168 259	302 418	2.2	
c	8	6167 231 6168 196	302 421 302 422	2.4	
c	-	6168 160	302 420	2.2	
с		6168 134	302 416	2.2	
C		6168 101 6168 046	302 411 302 407	2.1 2.6	
D	1	6168 112	302 393	2.2	
D	2	6168 122 6168 133	302 391	2.2	
D	1	6168 133	302 388 302		REGROW AREA STOCKPILE
D	2	6168	302		REGROW AREA STOCKPILE
D	3	6168	302		REGROW AREA STOCKPILE
D	2	6168 225 6168 241	302 394 302 394	2.3	
D	3	6168 259	302 394	2.2	
E					
E	2	6168 105 6168 118	302 384 302 382	2.2	
E		6168 137	302 380	2.2	
Ε	4-5	6168	302		REGROW AREA STOCKPILE
F	1	6168 135	302 352	2.2	
F	2	6168 119	302 351	2.2	
F	3	6168 104	302 357	25.1	
F	4	6168 6168 229	302 302 347	2.2	REGROW AREA STOCKPILE
F	6	6168 236	302 350	2.2	
F	7	6168 250	302 358	2.2	
G	1	6168 405	302 231	2.2	
G		6168 406	302 260	2.2	
G G		6168 431	302 310	2.2	
G	4	6168 449	302 343	2.2	
н	1	6168 407	302 562	2.2	
н	2	6168 365	302 552	2.2	
н		6168 325	302 548		
н	3			2.2	
	3 4 5	6168 290 6168 207	302 544 302 599	2.2 2.1 2.2	
н	4 5 6	6168 290 6168 207 6168 189	302 544 302 599 302 591	2.1 2.2 2.2	
н н н	4	6168 290 6168 207 6168 189 6168 160	302 544 302 599 302 591 301 599	2.1 2.2 2.2 2.2	
н	4 5 6 7	6168 290 6168 207 6168 189	302 544 302 599 302 591	2.1 2.2 2.2	
н н н н	4 5 6 7 8 9 10	6168 290 6168 207 6168 189 6168 160 6168 141 6168 286 6168 082	302 544 302 599 302 591 301 599 301 624 302 632 302 632 302 571	2.1 22 22 23 22 23 22 22 22	
н н н н н	4 5 7 8 9 10 11	6168 290 6168 207 6168 189 6168 160 6168 141 6168 286 6168 082 6188 125	302 544 302 599 302 591 301 599 301 624 302 632 302 571 302 552	2.1 22 22 23 22 23 22 22 22 22 22	
н н н н н н н	4 5 6 7 8 9 10	6168 290 6168 207 6168 189 6168 160 6168 141 6168 286 6168 082	302 544 302 599 302 591 301 599 301 624 302 632 302 632 302 571	2.1 22 22 23 22 23 22 22 22	
н н н н н н н н	4 5 6 7 8 9 10 11 11 12 13 14	6168 290 6168 207 6168 169 6168 160 6168 141 6168 286 6168 082 6168 125 6168 159 6168 493 6168 493 6168 451	302 544 302 599 302 591 301 659 301 624 302 632 302 671 302 552 302 534	2.1 22 22 23 22 22 23 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 0 10 11 11 12 13 13 14 15	6168 290 6168 207 6168 189 6168 180 6168 141 6168 286 6168 082 6168 082 6168 125 6168 159 6168 493 6168 451 6168 414	302 544 302 599 302 591 301 599 301 624 302 632 302 652 302 552 302 534 302 350 302 284 302 284	21 22 22 23 22 22 23 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н	4 5 6 7 10 11 11 12 13 14 14 15 16	6168 290 6168 207 6168 189 6168 180 6168 140 6168 286 6168 082 6168 082 6168 199 6168 493 6168 451 6168 414 6168 379	302 544 302 599 302 591 301 599 301 624 302 632 302 571 302 552 302 554 302 350 302 254 302 245 302 207	2.1 22 22 22 23 22 22 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 0 10 11 11 12 13 13 14 15	6168 290 6168 207 6168 189 6168 180 6168 141 6168 286 6168 082 6168 082 6168 125 6168 159 6168 493 6168 451 6168 414	302 544 302 599 302 591 301 599 301 624 302 632 302 652 302 552 302 534 302 350 302 284 302 284	21 22 22 23 22 22 23 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 10 10 11 12 13 13 14 15 16 17 17 18 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6168 290 6168 207 6168 169 6168 169 6168 160 6168 141 6168 286 6168 125 6168 159 6168 493 6168 451 6168 379 6168 341 6168 322 6168 322 6168 322 6168 266	302 544 302 599 302 591 301 599 301 624 302 632 302 671 302 652 302 554 302 255 302 254 302 245 302 245 302 277 302 172 302 135	2.1 22 22 23 22 22 22 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 10 11 11 12 13 13 14 15 16 17 18 19 20	6168 290 6168 207 6168 169 6168 160 6168 141 6168 286 6168 082 6168 082 6168 125 6168 125 6168 493 6168 493 6168 451 6168 451 6168 379 6168 302 6168 302 6168 208	302 544 302 599 302 591 301 599 301 624 302 632 302 652 302 552 302 534 302 254 302 254 302 245 302 245 302 277 302 135 302 105 302 75	21 22 22 22 23 22 22 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 10 10 11 12 13 13 14 15 16 17 17 18 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6168 290 6168 207 6168 169 6168 169 6168 160 6168 141 6168 286 6168 125 6168 159 6168 493 6168 451 6168 379 6168 341 6168 322 6168 322 6168 322 6168 266	302 544 302 599 302 591 301 599 301 624 302 632 302 671 302 652 302 554 302 255 302 254 302 245 302 245 302 277 302 172 302 135	2.1 22 22 23 22 22 22 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 10 11 12 13 14 15 16 14 15 16 17 17 18 19 20 20 21 22	6168 290 6168 207 6168 169 6168 160 6168 160 6168 161 6168 286 6168 082 6168 159 6168 159 6168 493 6168 451 6168 451 6168 341 6168 341 6168 302 6168 202 6168 208 6168 209 6168 149 6168 079 6168 040	302 544 302 599 302 591 301 599 301 624 302 632 302 671 302 552 302 554 302 254 302 254 302 245 302 245 302 245 302 207 302 172 302 135 302 105 302 75 302 068 302 063 302 065	21 22 22 23 22 22 22 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 10 11 11 12 13 13 14 15 16 17 18 19 20 20 21 22 23 24	6168 290 6168 297 6168 169 6168 169 6168 161 6168 286 6168 286 6168 285 6168 125 6168 125 6168 125 6168 493 6168 451 6168 451 6168 379 6168 341 6168 302 6168 208 6168 208 6168 149 6168 040 6168 044	302 544 302 599 301 599 301 624 302 631 302 632 302 671 302 552 302 534 302 254 302 254 302 245 302 245 302 277 302 135 302 105 302 75 302 068 302 065 302 131	21 22 22 22 22 22 22 22 22 22 22 22 22 2	
н н н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 10 11 11 12 13 13 14 15 16 17 18 19 20 20 21 22 23 24	6168 290 6168 207 6168 169 6168 160 6168 160 6168 161 6168 286 6168 082 6168 159 6168 159 6168 493 6168 451 6168 451 6168 341 6168 341 6168 302 6168 202 6168 208 6168 209 6168 149 6168 079 6168 040	302 544 302 599 301 599 301 599 302 631 302 632 302 551 302 552 302 534 302 254 302 245 302 207 302 135 302 105 302 105 302 068 302 085 302 131 302 172	2.1 22 22 22 22 22 22 22 22 22 22 22 22 22	
н н н н н н н н н н н н н н н н н н н	4 5 6 7 8 9 10 11 11 12 13 13 14 15 16 17 18 19 20 21 22 23 23 24 24 25	6168 290 6168 207 6168 207 6168 189 6168 180 6168 141 6168 286 6168 082 6168 125 6168 125 6168 125 6168 139 6168 493 6168 493 6168 493 6168 493 6168 302 6168 208 6168 208 6168 079 6168 040 6168 044 6168 044	302 544 302 599 301 599 301 624 302 631 302 632 302 671 302 552 302 534 302 254 302 254 302 245 302 245 302 277 302 135 302 105 302 75 302 068 302 065 302 131	2.1 22 22 22 22 22 22 22 22 22 22 22 22 22	

			٦		
н	30	6167 891	302 450	2.1	
н	31	6167 897	302 469	2.1	
н	32	6167 912	302 487	2.1	
н	33	6167 949	302 492	2.1	
1	1	6168 150	302 105	2.3	
1	2	6168 155	302 134	2.4	
1	3	6168 159	302 159	2.1	
1	4	6168 199	302 163	2.8	
1	5	6168 179	302 238	3.3	
		6168 365	302 199	2.4	
J					
J	2	6168 319	302 205	2.4	
J	3	6168 299	302 213	2.3	
	4	6167 274	302 223	2.3	
5	4				
J	5	6167_250	302_231	2.3	
к	1	6168 523	302 391	2.1	
к	2	6168 538	302 444	2.0	
к	3	6168 591	302 438	2.1	
к	4	6168 567	302 375	2.1	
к	5	6168 560	302 375	2.1	
	0	0100 000	002 010	2.1	
	1				
L	1	6168 753	302 337	2.3	
L	2	6168 719	302 312	2.2	
L	3	6168 688	302 288	2.2	
L	4	6168 658	302 261	2.1	
L	5	6168 628	302 238	2.2	
L	6	6168 576	302 204	2.1	
Compressor Shad				2.3	
Compressor Shed	1				
Office	1			2.4	
Community Recycling Centre	1			2.6	
OLD Weighbridge	1			3.0	
OLD Weighbridge Toilet	1			4.8	
Revolve Shop	1			2.6	
Building Truckwash	1			2.7	
New Weighbridge	1			2.4	
					a
Methane Blank (Pre testing)				2.5	Taken at entrance to Dunmore site before main gate
Methane Blank (Post testing)				2.3	Taken at entrance to Dunmore site before main gate
Comments:					
Sampling performed in accordance		ntal Guidelines Solid Wante	Landfille Second Edition	2016	
Gas concentrations are reported as	raw values without	correction for background c	oncentration.	.010	

Appendix E: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Events

	Mandatory Fields					CHAI	N OI	F CUS	TODY					D		
CLIENT COD	E: SHECIT	*PROJECT MANAGER:		Ryan S	tirling	I			SAMPLER	:	SAMPLI	ED BY ALS	;	Page _	01	
*CLIEN	T: Shellharbour City Council	*PM MOBILE:	1						SAMPLE		02 42	25 3125		CoC #: (//	applicable)	ALS
OFFIC (Invoiced Office		LS QUOTE # ient PL if blank)		2024-81 DRV	VDD TEI	NDER			PURCHASE ORDER NO	1	16	6321				
PROJEC									SITE		Dur	nmore		1		
*INVOICE TO (client default if n	D: Financial@shellbarbour.nsw.gov.au											C	CC Invoice to	0	BIOSEC	URITY
*EMA REPORTS TO (default to PM blan	D: Mitchell.copasshellha	gov.au, Glenn.hol arbour.nsw.gov.a	denshellha u, lab@enrs	rbour.nsw.g s.com.au	jov.au,		Mark a	here Metals	are required, spec	//or Analysis Suite C ify Total (unfiltered	IS REQUIRED Codes must be listed to bottle required) or Dis the parameter liste	solved (field filtere	ed price)	Country of O (if not Austra		
Plea Standard Store Wat	E REQUIREMENTS ase check bax. → age time from receipt of samples: ters - 3 weeks Is - 2 months Standard Storag Specify Disposal Date: Note: Extended storage incurs a fee requires a signed agreement.	Ge −→ (Not all tests can contact Client Se informa	eck box be expedited, rvices for more	5+ day 3 day (1 2 day (1 1 day (1	+15%) +30%)	rcharge)								Nollongon Work Orde EW2	g er Referend	ce
Comments:					5	MATRIX: Soul/Solidig) Wate (W) Sediments (SD), Dowt (D), Product (P), Biota (B), Biosocial (BS)		Test					т	elephone : 02 42	r.	
Only Lab ID	Sample ID	Depth	Date	/Time	No. Bottles	MATRIX: soil/Solid SD), Dus Siosolid (TSS	Field Test pH						(additional bottles req.) Dup MS	(Comment on	litional Information hazards - e.g., asbestos, known gh contamination)
1	SWP1	24	3.25	13:40	1	w	X	X								
V	SWP2		ч	13:30	1	w	X	Х								
	1															
													4			
(Lab Use Mo ONLY)	ihilling Ico: Iso Bricks: ethod: Frozen / Melted Frozen Thawed N	lone Sample Temp at Receipt 4. 2	3 ° 41.	•	- 3°	Security Seai Intact (circle)		(NA(None)	Carrier Details Con Note #	Courie		-LS A	Packaging: (Circle) Pougt	Hard Esky	Foam Esky Box/Bag/Other # #
Relimpiched by	+ Dalio Signature	VAC	1.		23.	3:25	-	Received	10.	Ane	ta	Signature	V	N	Date/ Time;	2813125
Relinquished by:	Signature:			Date/ Time:				Received	by:			Signature	1		Date/ Time:	

Work Order

Client

Contact

Address

CERTIFICATE OF ANALYSIS : EW2501658 Page : 1 of 2 : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast : Ryan Stirling Contact : Aneta Prosaroski : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529 Telephone : 02 42253125 : --- Date Samples Received : 28-Mar-2025 15:35

Telephone	:	Telephone	: 02 42253125	
Project	: Dunmore Landfill Overflows	Date Samples Received	: 28-Mar-2025 15:35	AWIIIII
Order number	: 166321	Date Analysis Commenced	: 28-Mar-2025	
C-O-C number	:	Issue Date	: 03-Apr-2025 11:38	NATA
Sampler	: Robert DaLio			
Site	: DUNMORE LANDFILL TENDER			
Quote number	: EW24SHECIT0001 (RFT 2024/81) Tender			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 2			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWP2 Point 1	 	
		Samplii	ng date / time	28-Mar-2025 13:40	28-Mar-2025 13:30	 	
Compound	CAS Number	LOR	Unit	EW2501658-001	EW2501658-002	 	
				Result	Result	 	
EA005FD: Field pH							
рН		0.1	pH Unit	7.9	7.6	 	
EA025: Total Suspended Solids drie	ed at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	<5	12	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) EA025: Total Suspended Solids dried at 104 \pm 2°C

	Mandatory	Fields					CHAI	NOF	CUS	TODY				Denne		
CLIENT COD	DE:	SHECIT	*PROJECT MANAGER:	-	Ryan St	tirling				SAMPLER	:	SAMPLED	D BY ALS	Page _	_01	
*CLIEN	T: Shellhark	our City Council	*PM MOBILE:							SAMPLE		02 422	5 3125	CoC #: (if	applicable)	ALS
OFFIC (Invoiced Offic		harbour	ALS QUOTE # (Client PL if blank)		2024-81 DRW		DER			PURCHASE ORDER NO		166:	321			
PROJE	CT Dunmara Land	fill Overflow	(Client FL II blank)				_	-		SITE		Dunn	more		1	
NO./PROJEC	O: <u>Financial@sh</u>	eliharbour.nsw.gov.au											CC Invoice 1	to	BIOSEC	
(client default if *EMA		.stirlingshellharbour.ns	w.gov.au. Glenn.he	oldenshellhar	bour.nsw.a	ov.au.		-	-	-	++++++		PM	Country of C	Applear in Marca	
REPORTS T (default to PI bla	O: A if	Mitchell.copasshe							here Metals	are required, spec	d/or Analysis Suite (ify Total (unfiltered	Codes must be listed to at bottle required) or Dissol	tract suite/quoted price) lved (field filtered bottle required) above to be tested on that samp	(if not Austra	alia)	/ision
Ple Standard Stor Wa	E REQUIREMENTS hase check box. → age time from receipt of samples: hters - 3 weeks ils - 2 months	Standard Sto Extended St Specify Disposal Date: Note: Extended storage incurs a requires a signed agreem	orage (Not all tests c contact Client : inform a fee and	AROUND theck box → an be expedited, services for more nation)	 5+ days 3 day (+ 2 day (+ 1 day (+ 	+15%) +30%)	harge)							Wollongo Work Or EW	ong der Refere 2501	661
omments:							MATRIX: Soil/Solid(S) Water(W) Sediments (SD), Dust(D), Product (P), Biota (B), Biosolid (BS)		Test			*		Telephone : 0		
LS Use Only Lab ID		Sample ID	Depth	Date/	Time	No. Bottles	MATRIX: Soil/Solid((SD), Dust Biosolid (E	TSS	Field Test pH					(additional bottles reg.) Dup MS	(Comment on	litional Information hazards - e.g., asbestos, kno igh contamination)
		SWP1	м.)	31.3.20	5 12:15	-	w	х	X							
		SWP2		1	12:20		w	х	X							
				ď												
						12				2						
						-										
		Contract of the				- 1	1									
Lab Use N ONLY)	Ice: Chilling Method: Frozen / Melt		None Sample Temp at Receipt	5 ° 4.	6 ~ 4	D.c	Security Seal Intact (circle)	Yes	/ No (NA(None)	Carrier Details Con Note #	Courier/	ALS	n Packaging: (Circle) Count	Hard Esky	Foam Esky Box/Bag/0
Pabe	rt Dal		Va	Q.	Date/ Time:	3.1	13/2	25	Received		An	eth	Signature	-	Date/ Time:	31312
quished by:		Signa	iture:		Date/ Time:		/		Received	by:			Signature		Date/ Time:	

ENFM (204/17)

Approved Date: 13/02/2024

CERTIFICATE OF ANALYSIS Page Work Order : EW2501661 : 1 of 2 Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast Contact : Ryan Stirling Contact : Aneta Prosaroski Address Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia : LAMERTON HOUSE, LAMERTON CRESCENT SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529 Telephone Telephone : 02 42253125 : -----: Dunmore Landfill Overflows **Date Samples Received** Project : 31-Mar-2025 14:25 Order number : 166321 Date Analysis Commenced : 31-Mar-2025 C-O-C number · ____ Issue Date : 07-Apr-2025 15:23 Sampler : Robert DaLio 4 Julio Accreditation No. 825 Site : DUNMORE LANDFILL TENDER Accredited for compliance with ISO/IEC 17025 - Testing Quote number : EW24SHECIT0001 (RFT 2024/81) Tender No. of samples received : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 2

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWP2 Point 1	 	
		Samplii	ng date / time	31-Mar-2025 12:15	31-Mar-2025 12:20	 	
Compound	CAS Number	LOR	Unit	EW2501661-001	EW2501661-002	 	
				Result	Result	 	
EA005FD: Field pH							
рН		0.1	pH Unit	7.6	7.8	 	
EA025: Total Suspended Solids drie	d at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	7	28	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry / Biology).

(WATER) EA025: Total Suspended Solids dried at 104 \pm 2°C

Appendix F: Calibration Certificates

CERTIFICATION **OF CALIBRATION**

Issued by: QED Environmental Systems Inc.

Calibration	certificate number	24RA-63118

Instrument

Laser One

Serial Number 41650

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from 0-1000ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	0.0	0	0	0	0.00	0.00	0.00	0.00
1000	3.01	2.8	2.8	2.8	2.80	0.21	0.02	0.02
1000	11.0	10.9	10.9	10.9	10.90	0.10	0.01	0.01
1000	100.0	99.8	99.8	99.8	99.80	0.20	0.02	0.02
1000	1006	1000	1000	1000	1000.00	6.00	0.60	0.60
						Uncertainty	0.60	%
						Max % error	0.60	% FS

Gas verification from 0-100% vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.18	2.10	2.10	2.10	2.10	0.08	0.08	0.08
100.00	5.00	5.00	5.00	5.00	5.00	0.00	0.00	0.00
100.00	15.00	15.00	15.00	15.00	15.00	0.00	0.00	0.00
100.00	50.00	49.80	49.80	49.80	49.80	0.20	0.20	0.20
100.00	100.00	99.80	99.80	99.80	99.80	0.20	0.20	0.20
						Uncertainty	0.20	%

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error (% F.s.)	Maximum erroi %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.18	2.10	2.10	2.10	2.10	0.08	0.08	0.08
100.00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00

0.08	%
0.08	% FS
	0.00

0.20

% FS

www.qedenv.com

(800) 624-2026 info@qedenv.com

Max % error

QED Environmental Systems Inc. 2355 Bishop Circle West, Dexter, MI 48130

Page 1 of 2

Issued by: QED Environmental Systems Inc.

Environmental conditions during calibration

Temp.	22.8	С	
Pressure	989.2	mBar	

Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas	
Synthetic Air	303802	3/12/2029	Synthetic Air	
3 ppm	4405001 02/29/2027		CH4	
10 ppm	4225861	9/30/2025	CH4	
100ppm	4421183	4421183 7/1/2027 CH4		
1000 ppm	CC64714	9/27/2028	CH4	
1.0% Vol	DT0008070	DT0008070 5/24/2029 CH4		
2.2% vol	CC81557	9/29/2028	CH4	
5.0% vol	TT44360	9/11/2028	CH4	
15% vol	481840 6/12/2029 CH4		CH4	
50% vol	CC708175	08175 1/22/2029 CH4		
100% vol	HP-T-105403	8/22/2028	CH4	

Calibration results: Pass

Next scheduled calibration: 8/29/2025

Calibration date: 8/29/2024

Issued by: Sarah Schafer

Sarah Schalp

www.qedenv.com (800) 624-2026 info@qedenv.com

QED Environmental Systems Inc. 2355 Bishop Circle West, Dexter, MI 48130

Page 2 of 2

Appendix G: Gas Flare Reports

PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. Results Achieved since the Project Commenced*

BIOGAS CAPTURED

29.3 million m3

CARBON ABATEMENT 279 thousand tonnes 1

(t CO2e - environmental benefit) S

ACCUs CREATED

141 thousand Australian Carbon Credit Units (ACCUs) 4.6 million seedlings planted for 10 years (t CO2e)

SEEDLINGS PLANTED CARS OFF THE ROAD

5,022 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

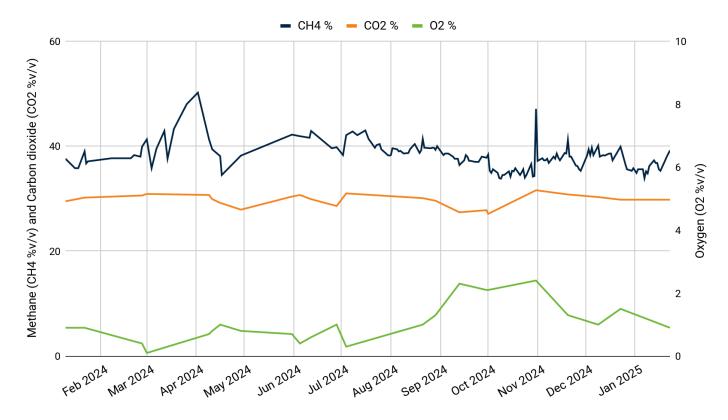
- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- While there is no regulatory requirement to capture biogas, ACCUs enable additional carbon abatement by making it commercially viable to upgrade and expand the biogas capture system under the Emissions Reduction Fund (ERF). This empowers LGI to install and operate a viable flaring project.
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

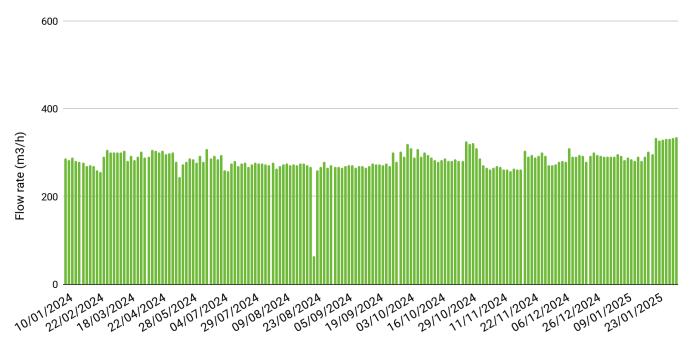
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	14/02/2025
Report month:	January 2025	Prepared by:	Grace Burtenshaw
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

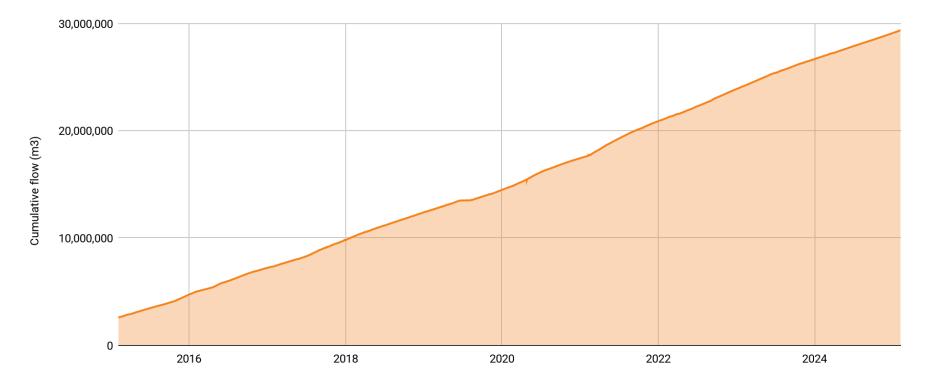
Comments on	December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
changes to existing	reliability of condensate management in the main gas line.
system:	May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated
	leachate being returned into sump 5.
	June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new
	flare has improved control systems, reliability and performance, and will be compliant with
	current Type B Gas and Hazardous Area Zoning regulations.
	October 2024 - LGI Repaired a submain that was damaged in day to day operations. LGI
	conducting repair works on the flare (asset team for further information).
Recommendations:	LGI recommends continued regular communication with Council regarding leachate
	management, site performance and future planning.
	Future Gas Field expansion works viable for the site. LGI recommends continuous
	communication to ensure this can be strategically undertaken.


Availability - 100.00 % Down Time: 0.00 h
Field tuned: - 23/01/2025

Flare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³)
02/01/2025	34.9	-	-	290	641	29,132,914
09/01/2025	34.8	-	-	284	654	29,181,018
17/01/2025	35.3	-	-	290	650	29,237,260
23/01/2025	39.2	29.8	0.9	333	722	29,279,846
Average	36.05	29.80	0.90	299	667	-

Dunmore- Methane, Carbon Dioxide & Oxygen


Dunmore - Flow Rate

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Dunmore - Cumulative Flow

29,348,538 m3 of combusted landfill gas from the beginning of the project up to 1 February 2025 represents:

- 278,741 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,645,678 seedlings planted for 10 years
- 5,022 (cars off the road for the last 12 months)
- 141,543 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

Archived commentary:

• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
-
• June 2016 - LGI disconnected the extended gas capture system to assist the
Council.
• September 2016 - LGI disconnected the extended gas capture system to assist
the Council.
November 2016 - LGI commissioned the connection to leachate sump 6 as of
23-11-2016.
• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
system
• November 2019 - LGI on site to move mainline up batter, and reconnected
infrastructure that had been previously disconnected, including 4 wells on the
dimple and a 160mm leachate riser.
• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
• February 2021 - LGI installed 13 new vertical wells, including a new submain
• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
analyser for greater accuracy and reliability
• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
allow for intermediate capping to continue across the top of cell 3
• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
greater reliability of condensate management in the main gas line.

PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

29.6 million m3

CARBON ABATEMENT

281 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

141 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

4.7 million seedlings planted for 10 years (t CO2e)

5.095 for the last 12

months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

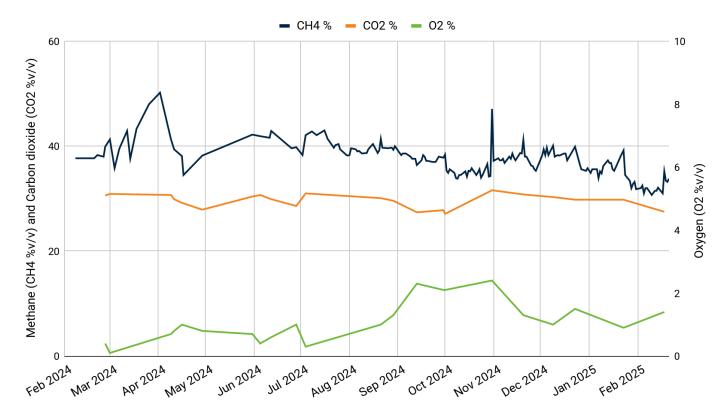
- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- While there is no regulatory requirement to capture biogas, ACCUs enable additional carbon abatement by making it commercially viable to upgrade and expand the biogas capture system under the Emissions Reduction Fund (ERF). This empowers LGI to install and operate a viable flaring project.
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

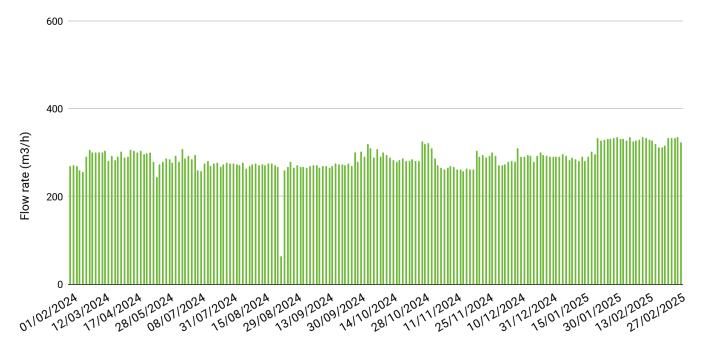
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	10/03/2025
Report month:	February 2025	Prepared by:	Grace Burtenshaw
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

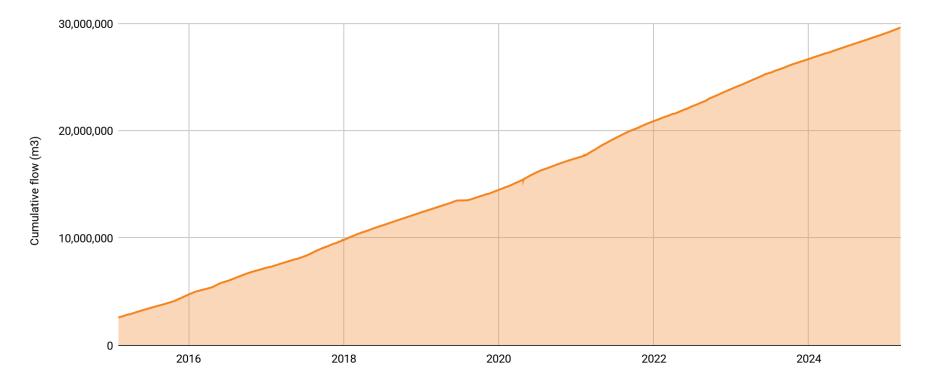
	December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
changes to existing	reliability of condensate management in the main gas line.
system:	May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuated
	leachate being returned into sump 5.
	June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new
	flare has improved control systems, reliability and performance, and will be compliant with
	current Type B Gas and Hazardous Area Zoning regulations.
	October 2024 - LGI Repaired a submain that was damaged in day to day operations. LGI
	conducting repair works on the flare (asset team for further information).
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.
	Future Gas Field expansion works viable for the site. LGI recommends continuous communication to ensure this can be strategically undertaken.


Availability - 99.83 %		
Down Time: 1.17 h		
1.08h - Forced Outage Internal		
Field tuned:		
- 18/02/2025		

Flare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m³)
04/02/2025	32.5	-	-	331	658	29,375,471
12/02/2025	31.5	-	-	335	648	29,439,761
18/02/2025	35.2	27.5	1.4	320	667	29,485,870
25/02/2025	31.4	-	-	333	684	29,540,156
Average	32.65	27.50	1.40	330	664	-

Dunmore- Methane, Carbon Dioxide & Oxygen


Dunmore - Flow Rate

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Dunmore - Cumulative Flow

29,570,462 m3 of combusted landfill gas from the beginning of the project up to 1 March 2025 represents:

- 280,848 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,680,807 seedlings planted for 10 years
- 5,095 (cars off the road for the last 12 months)
- 141,543 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

Archived commentary:

• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
-
• June 2016 - LGI disconnected the extended gas capture system to assist the
Council.
• September 2016 - LGI disconnected the extended gas capture system to assist
the Council.
November 2016 - LGI commissioned the connection to leachate sump 6 as of
23-11-2016.
• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
system
• November 2019 - LGI on site to move mainline up batter, and reconnected
infrastructure that had been previously disconnected, including 4 wells on the
dimple and a 160mm leachate riser.
• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
• February 2021 - LGI installed 13 new vertical wells, including a new submain
• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
analyser for greater accuracy and reliability
• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
allow for intermediate capping to continue across the top of cell 3
• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
greater reliability of condensate management in the main gas line.

PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

29.8 million m3

CARBON ABATEMENT

283 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED 141 thousand Australian

Carbon Credit Units

4.7 million seedlings planted for 10 years (t CO2e)

=	
≡∰	

SEEDLINGS PLANTED CARS OFF THE ROAD

5,219 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

 Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.

(ACCUs)

- While there is no regulatory requirement to capture biogas, ACCUs enable additional carbon abatement by making it • commercially viable to upgrade and expand the biogas capture system under the Emissions Reduction Fund (ERF). This empowers LGI to install and operate a viable flaring project.
- Since 2013, LGI has installed a bespoke biogas management system with an LGI made 1000 m³/hr ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

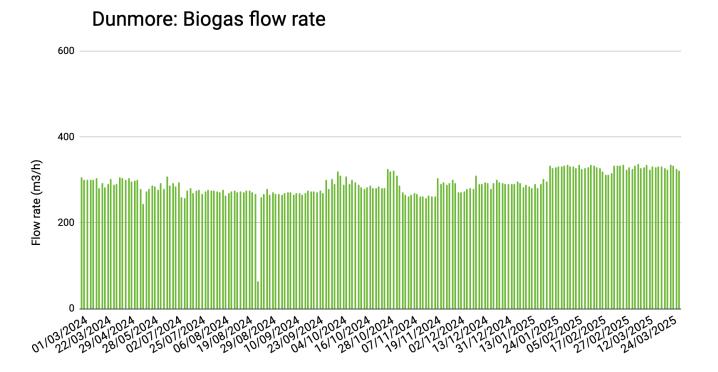
Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	17/04/2025
Report month:	March 2025	Prepared by:	Grace Burtenshaw
Prepared for:	Shellharbour City Council	Checked by:	Tom O'Connor

Comments on	December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater			
changes to existing	reliability of condensate management in the main gas line.			
system:	May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with evacuate			
	leachate being returned into sump 5.			
	June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with			
	evacuated leachate being returned into sump 5.			
	 October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The new flare has improved control systems, reliability and performance, and will be compliant with current Type B Gas and Hazardous Area Zoning regulations. October 2024 - LGI Repaired a submain that was damaged in day to day operations. LGI conducting repair works on the flare (asset team for further information). March 2025 - LGI conducted a site visited and has marked out a further 14-18 wells in the recently completed Cell. LGI to start works around the 19th of May 2025 if all approval processes are completed. 			
Recommendations:	LGI recommends continued regular communication with Council regarding leachate management, site performance and future planning.			
	Future Gas Field expansion works viable for the site. LGI recommends continuous communication to ensure this can be strategically undertaken.			

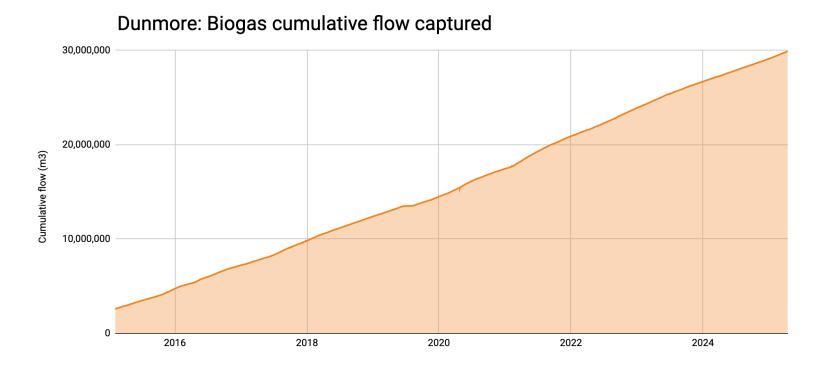
Comments on operation/maintenance:	Availability - 96.81 % Down Time: 23.75 h
	23.75h - Forced Outage Internal
	Field tuned: - 31/03/2025

sFlare Operational Data:


Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³)
05/03/2025	31.9	-	-	333	686	29,604,252
13/03/2025	32	-	-	324	670	29,668,253
19/03/2025	32.4	-	-	331	667	29,715,992
31/03/2025	38.4	28.5	0.8	326	710	29,806,627
Average	33.68	28.50	0.80	329	683	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Dunmore - Flow Rate



LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

29,811,061 m3 of combusted landfill gas from the beginning of the project up to 1 April 2025 represents:

- 283,134 tonnes of CO2 equivalent (total methane abated by gas capture system to date).

- 4,718,892 seedlings planted for 10 years

- 5,219 (cars off the road for the last 12 months)
- 141,543 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

Archived commentary:

• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
-
• June 2016 - LGI disconnected the extended gas capture system to assist the
Council.
• September 2016 - LGI disconnected the extended gas capture system to assist
the Council.
• November 2016 - LGI commissioned the connection to leachate sump 6 as of
23-11-2016.
• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG
system
• November 2019 - LGI on site to move mainline up batter, and reconnected
infrastructure that had been previously disconnected, including 4 wells on the
dimple and a 160mm leachate riser.
• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
• February 2021 - LGI installed 13 new vertical wells, including a new submain
• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model
analyser for greater accuracy and reliability
• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to
allow for intermediate capping to continue across the top of cell 3
• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for
greater reliability of condensate management in the main gas line.