

Annual Environmental Monitoring Report (AEMR) 2022-2023

Address:	Dunmore Recycling & Waste Depot 44 Buckleys Road, Dunmore, NSW, 2529
Project No.:	ENRS0033
Date:	November 2023

Author and Document Control

Written / Submitted ByReviewed / Approved ByImage: Construction of the section of t

Record of Distribution:

Copies	Status	Document	Date	Prepared For
PDF	Rev.1	ENRS0033_SCC Dunmore Landfill_AEMR 2022-2023	28/11/2023	SCC

Executive Summary

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Annual Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (AEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the 2022-2023 monitoring period, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

The objectives of this AEMR are to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in an Annual Environmental Monitoring Report.

The scope of work for this AEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the 2022-2023 monitoring period in regard to the following tasks:

- Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- > Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- Review all quarterly environmental monitoring reports from the 2020 reporting period and available data from the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

Based on the findings obtained during the 2022-2023 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within multiple groundwater bores. These exceedances were considered to be within historical values with no significant change in site conditions;
- Offsite sample locations within Rocklow Creek generally reported satisfactory results. However, exceedances for ammonia were above the ecological stressor value.
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;
- Based on this review of the 2022-2023 annual monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Flare temperatures fell below the required KPI of 760 degrees Celsius on many occasions over the 2022-2023 monitoring period. Further detail relating to root causes and current works are available in the attached Flare Reports in **Appendix J** of this report;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

Table of Contents

E	(ecutiv	e Summary	iii
1	Intro	oduction1	10
	1.1	Project Background 1	10
	1.1.	1 Site History 1	10
	1.2	EPL Requirements	10
	1.3	Objectives 1	1
	1.4	Scope of Work 1	1
2	Site	Identification	1
	2.1	Site Identification 1	1
	2.2	Surrounding Land Use1	3
	2.2.	1 Sensitive Receptors 1	3
	2.3	Topography1	4
	2.4	Soil Landscape1	4
	2.5	Geology1	4
	2.6	Hydrogeology1	4
	2.6.	1 Existing Bores 1	4
	2.6.	2 Flow Regime 1	15
	2.7	Surface Water1	15
3	Asse	essment Criteria1	.5
	3.1	Water Quality Guidelines 1	15
	3.1	Groundwater & Surface water Assessment Criteria1	6
	3.1.	1 Ammonia Assessment criteria 1	17
	3.2	Dust Deposition Assessment Criteria 1	17
	3.3	Surface Methane Gas Assessment Criteria 1	17
	3.4	Gas Accumulation Assessment Criteria within Enclosed Structures 1	17
4	Data	a Quality Objectives (DQO)1	8
	4.1	Step 1: State the problem	8
	4.2	Step 2: Identify the decision/goal of the study1	8
	4.3	Step 3: Identify the information inputs	8
	4.4	Step 4: Define the study boundaries 1	8
	4.5	Step 5: Develop the analytical approach (decision rule)1	8

	4.6	Step	6: Specify performance or acceptance criteria	19
	4.7	Step	7: Develop the plan for obtaining data	19
5	Sar	npling	Methodology	19
	5.1	Wat	er Sampling	20
	5.1	.1	Location of Water Monitoring Points	20
	5.1	.2	Depth to Water	20
	5.1	.3	Sample Collection	20
	5.1	.4	Groundwater Sampling	20
	5.1	.5	Field Testing	21
	5.2	Dust	Deposition Sampling	21
	5.3	Surf	ace Methane Gas Monitoring	21
	5.4	Gas	Accumulation Monitoring in Enclosed Structures	21
	5.5	Labo	pratory Analysis	22
	5.6	Flare	e Monitoring	22
	5.7	QAC	1C	22
6	Wa	iter Qi	uality Results	22
	6.1	Ove	rflow Results	23
	6.2	Phys	sical Indicators	23
	6.2	.1	Groundwater Depth	23
	6.2	.2	Salinity	23
	6.2	.3	Dissolved Oxygen	24
	6.2	.4	рН	24
	6.2	.5	Total Suspended Solids (TSS)	25
	6.3	Inor	ganic Analytes	25
	6.3	.1	Ammonia	25
	6.3	.2	Nitrate	26
	6.3	.3	Nitrite	26
	6.4	Anic	ons	26
	6.4	.1	Chloride	26
	6.4	.2	Fluoride	26
	6.4	.3	Sulphate	27
	6.4	.4	Total Alkalinity	27
	6.4	.5	Bicarbonate Alkalinity	27

	6.5	Metals	27
	6.5	.1 Manganese (Total Mn)	27
	6.5	.2 Iron (total Fe)	27
	6.5	.3 Iron (Dissolved Fe)	27
	6.5	.4 Calcium	27
	6.5	.5 Potassium	27
	6.6	Organic Analytes	28
	6.6	.1 Total Organic Carbon	28
7	Du	st Gauge Results	28
8	Me	thane Monitoring Results	29
	8.1	Surface Gas Methane	29
	8.2	Gas Accumulation Monitoring in Enclosed Structures	29
9	Fla	re Operations Results	29
10) Qu	ality Assurance/Quality Control Data Evaluation (QAQC)	30
10) Qu 10.1	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC	 30 30
10) Qu 10.1 10.2	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC	 30 30 32
10) Qu 10.1 10.2 10.3	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion	30 30 32 34
10) Qu 10.1 10.2 10.3 L An	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion nual Environmental Assessment	30 30 32 34 35
10	 Qu 10.1 10.2 10.3 An 11.1 	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion nual Environmental Assessment Monitoring Point Summary	30 30 32 34 35 35
10	 Qu 10.1 10.2 10.3 An 11.1 11.2 	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion nual Environmental Assessment Monitoring Point Summary Environmental Management	30 30 32 34 35 35
10	 Qu 10.1 10.2 10.3 An 11.1 11.2 11.2 11. 	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion nual Environmental Assessment Monitoring Point Summary Environmental Management	30 30 32 34 35 35 35
10	 Qu 10.1 10.2 10.3 An 11.1 11.2 11.2 11.3 	ality Assurance/Quality Control Data Evaluation (QAQC). Field Sampling QAQC. Laboratory QAQC. QAQC Discussion	30 30 32 34 35 35 35 35 35
10	 Qu 10.1 10.2 10.3 An 11.1 11.2 11.3 11.4 	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion nual Environmental Assessment Monitoring Point Summary Environmental Management 2.1 Landfill Operations Environmental Safeguards Monitoring Program	30 30 32 34 35 35 35 35 36 36
10	 Qu 10.1 10.2 10.3 An 11.1 11.2 11.3 11.4 2 Core 	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion nual Environmental Assessment Monitoring Point Summary Environmental Management 2.1 Landfill Operations Environmental Safeguards Monitoring Program	30 32 34 35 35 35 36 36 36
10 11 12 13	 Qu 10.1 10.2 10.3 An 11.1 11.2 11.3 11.4 2 Cor 3 Ref 	ality Assurance/Quality Control Data Evaluation (QAQC) Field Sampling QAQC Laboratory QAQC QAQC Discussion nual Environmental Assessment Monitoring Point Summary Environmental Management 2.1 Landfill Operations Environmental Safeguards Monitoring Program mclusions	30 32 34 35 35 35 36 36 36 38

List of Tables

Table 2-1:	Site Identification	11
Table 2-2:	Summary of surrounding land use	13
Table 3-1:	Water Quality Assessment Criteria	16
Table 3-2:	Groundwater & Surface Water Assessment Criteria	16

Table 4-1: Summary of Data Quality Objectives (DQO) 1	19
Table 5-1: Summary of QAQC for Sample Program	22
Table 6-1: Summary of Overflow Events	23
Table 7-1: Summary of Dust Gauge Results 2	28
Table 10-1: Sampling QAQC Procedures	30
Table 10-2: Laboratory QAQC procedures	32
Table 10-3: QAQC and Data Evaluation Summary	34
Table 14-1: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 1	14
Table 14-2: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 2 4	45
Table 14-3: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 3 4	16
Table 14-4: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment	
Criteria – Quarter 4 4	17
Table 14-5: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 1 4	18
Table 14-6: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 2 4	19
Table 14-7: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 3 5	50
Table 14-8: Ammonia Water Quality Results Compared against pH Modified Trigger Values – Quarter 4 5	51
Table 14-9: Duplicate Groundwater Sample Results and QC Data – Quarter 1 5	52
Table 14-10: Duplicate Groundwater Sample Results and QC Data – Quarter 1 5	53
Table 14-11: Duplicate Groundwater Sample Results and QC Data – Quarter 2 5	54
Table 14-12: Duplicate Groundwater Sample Results and QC Data – Quarter 2 5	55
Table 14-13: Duplicate Groundwater Sample Results and QC Data – Quarter 3 5	56
Table 14-14: Duplicate Groundwater Sample Results and QC Data – Quarter 3 Sample Results	57
Table 14-15: Duplicate Groundwater Sample Results and QC Data – Quarter 4	58
Table 14-16: Duplicate Groundwater Sample Results and QC Data – Quarter 4 Sample Results	59

List of Figures

Figure 2-1 Project Location	13
Figure 14-1: Sampling Points & Site Plan	41
Figure 14-2: Surface Methane Gas Sample Transects	42

Appendices

Appendix A: EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022)
Appendix B: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples – Quarter 1
Appendix C: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples – Quarter 2

Appendix D: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples –

Quarter 3

Appendix E: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples – Quarter 4

Appendix F: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples. Quarters 1-4

Appendix G: Surface Gas (Methane) Field Sheets. Quarters 1-4

Appendix H: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Events

- Appendix I: Calibration Certificates
- Appendix J: Gas Flare Reports

1 Introduction

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by ALS Environmental (Wollongong) on behalf of Shellharbour City Council (SCC) to prepare the Annual Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This (AEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the 2022-2023 monitoring period, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

1.1 Project Background

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the Waste Avoidance and Resource Recovery Act (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in Appendix A (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

1.3 Objectives

The objectives of this AEMR are to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in an Annual Environmental Monitoring Report.

1.4 Scope of Work

The scope of work for this AEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the 2022-2023 monitoring period in regard to the following tasks:

- Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- > Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- Review all quarterly environmental monitoring reports from the 2020 reporting period and available data from the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2 Site Identification

2.1 Site Identification

The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 2-1** below. Details of the Site boundary and sampling points are provided in the Site Plan as **Figure 14-1**. The key features required to identify the Site are summarised in **Table 2-1**.

Table	2-1:	Site	Identification
-------	------	------	----------------

Site	Description
Site name	Dunmore Recycling and Waste Depot
Street address	44 Buckleys Road, Dunmore, NSW 2529

Site	Description
Property description	-
(Lot / Deposited Plan)	21 / 653009 and 1 / 419907
Easting/Northing (GDA2020) (approximate centre of Site)	Zone 56H Easting: 302280 Northing: 6168169 (Approximate centre of Site)
Current owners	Shellharbour City Council
Current occupiers	Shellharbour City Council
Site area (total)	72.36 hectares
Site dimensions	Irregular shaped block. Please refer to Figure 14-1.
Areas excluded or inaccessible	Assessment was limited to the available data for the sample points listed in the EPL
Local government area	Shellharbour City Council
Current zoning	RU1 Primary Production
Locality map	Albion Park 9028
Trigger for assessment	Reporting requirements of EPL 5984
State or Local government statutory controls	 EPL 5984; EPL 12903; Contaminated Land Management Act 1997; Environment Protection Act 1997; Environment Protection Regulation 2005. Resilience and Hazards SEPP; Work Health and Safety Act 2011; Work Health and Safety Regulations 2011; Waste Avoidance and Resource Recovery Act (2001).
Legal permissions to access the Site obtained or required	N/A. ENRS did not access the Site.
Consent of adjoining landowners and/or occupiers to access land (if required)	N/A. Not required for this scope of work.

Figure 2-1 Project Location

Source: https://maps.six.nsw.gov.au/ (cited 1/11/2023)

2.2 Surrounding Land Use

The current activities and operations on adjacent properties and the surrounding area include:

Table 2-2: Summary of surrounding land use

Direction	Land Use
North	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.
East	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.
South	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.
West	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- Recreational users of the Minnamurra River estuary environs;
- Neighbouring and down gradient stakeholders;
- Ecological receptors flora and fauna.
- Shallow soil, groundwater and stormwater vertical and lateral migration of contaminants (if any) and connectivity with shallow groundwater, drainage waterways and nearby tributaries; and
- Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 Topography

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 Soil Landscape

Review of the Sites soil landscape was conducted with reference to the Kiama 1:100,000 soil landscape map. The Site was mapped as underlain by organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils.

2.5 Geology

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet (See Figure 4). The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb) characterised by Latite. Based on the mapped geology, previous investigations and borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 Hydrogeology

Groundwater resources in the area are expected to be associated with Shallow unconfined alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater. Given the spatial distribution of the bores and disturbed ground condition expected within the land fill cell, groundwater contours could not be accurately mapped.

A review of the NSW Office of Water (NOW) existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see Figure 5). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (Boral Site) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (Environmental Earth Sciences, 2018) have identified that groundwater flows vary across the Site, but the general trend is south, towards Rocklow Creek.

Based on the unconfined nature of the aquifers, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, was largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 Surface Water

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3 Assessment Criteria

ENRS have adopted the most appropriate criteria in accordance with current state and national guidelines. Where available, Australian and NSW EPA endorsed guidelines have been referenced in preference to international standards.

3.1 Water Quality Guidelines

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC;2013). The relevant criteria to protect environmental values are provided in **Table 3-1**:

Table 3-1: Water Quality Assessment Criteria

Environmental Value	Relevant Guideline						
Ecosystems / Health Screening Levels	 ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality); ASC NEPM (2013); and Health Screening Levels for Petroleum Hydrocarbons in Soil & Groundwater (CRC CARE, Sept. 2011) 						
Drinking Water	 Australian Drinking Water Guidelines (ADWG) 						

3.1 Groundwater & Surface water Assessment Criteria

The ANZG (2018) provide <u>default guideline values</u> (DGVs) for four (4) levels of protection categorised by the percent of species possibly affected, being 80%, 90%, 95% or 99% of species. Where DGVs are not available reference is made against the ANZECC (2000) Trigger Values (TV). The NSW Office of Water (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the 95 per cent of species level of protection. This assessment has adopted the assessment criteria considered most appropriate for the contaminants of concern based on the Site's EPL and results provided by ALS. The adopted TV for the Site Assessment Criteria (SAC) are summarised in **Table 3-2** below.

Table 3-2: Groundwater & Surface Water Assessment Criteria

Analyta	Unite	Fresh	Marine	Drinking Water ^B		
Analyte	Units	Water ^A	Water ^A	Health	Aesthetic	
Chloride	mg/L	-	-	-	250	
Calcium	mg/L	-	-	-	-	
Magnesium	mg/L	-	-	-	-	
Sodium	mg/L	-	-	-	180	
Potassium	mg/L	-	-	-	-	
Manganese	mg/L	1.9	-	0.5	0.1	
Total iron	mg/L	-	-	-	0.3	
Dissolved iron	mg/L	-	-	-	0.3	
Fluoride	mg/L	-	-	1.5	-	
Ammonia as N ^c	mg/L	0.91 (pH 8)	0.91 (pH 8)	-	0.5	
Nitrate as N	mg/L	0.7	-	50	-	
Nitrite as N	mg/L	-	-	3	-	
Total Organic Carbon	mg/L	-	-	-	-	
Bicarbonate alkalinity as CaCO3	mg/L	-	-	-	-	
Total alkalinity as CaCO3	mg/L	-	-	-	-	
Sulfate as SO4 - turbidimetric	mg/L	-	-	-	250	
Dissolved Oxygen - %	%					
Saturation		85-110%	-	-	-	
(surface water only)						
Suspended Solids (SS) (surface water only)	mg/L	-	-	-	-	

Analyta	Unite	Fresh	Marine	Drinking Water ^B		
Analyte			Water ^A	Health	Aesthetic	
Turbidity	NTU	_	<u>_</u>	_	5	
(surface water only)					U	
рН	рН	6.5-8.5		6.5-8.5	6.5-8.5	
Electrical Conductivity	µS/cm	2200	-	-	-	

Table notes:

Criteria is only provided for the analytes test by ALS and listed within EPL 5984.

A: Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.

B: Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).D. Criteria for ammonia. See Section 3.1.1:

3.1.1 Ammonia Assessment criteria

In addition to the default TV of 0.91mg/L (pH 8) for ammonia, Table 3.3.2 of the ANZECC (2000) also provides stressor values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems. The table provides a stressor guideline for ammonia of **0.2mg/L** at pH 8 for lowland rivers. For the purposes of this assessment, the value has been applied to all water samples, excluding the leachate tank.

pH specific ammonia TVs. Additional sample point specific pH dependant trigger values for total ammonia were also adopted when a sample was outside of 8 pH units. Sample specific values were based on Table 8.3.7 of the ANZECC (2000). The additional criteria and results are presented in **Table 14-5** - **Table 14-8** attached.

3.2 Dust Deposition Assessment Criteria

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1-Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m2/month.

3.3 Surface Methane Gas Assessment Criteria

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

3.4 Gas Accumulation Assessment Criteria within Enclosed Structures

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold gas levels to ensure that gas is not accumulating within enclosed structures on or within 250m of deposited waste or leachate storage. The acceptable threshold for 1% (volume/volume).

4 Data Quality Objectives (DQO)

If sampling is conducted, Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented in the National Environment Protection (Assessment of Site Contamination) Measure (NEPC;2013).

4.1 Step 1: State the problem

The Site is currently operating as an active landfill and requires regular environmental monitoring in accordance with the EPL 5984.

4.2 Step 2: Identify the decision/goal of the study

The primary goals / objectives of the investigation program were to:

- Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- Identify trends of the environmental monitoring data over the reporting period;
- > Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in an Annual Environmental Monitoring Report.

4.3 Step 3: Identify the information inputs

The provided results shall be used to identify any risks to the sensitive receptors or change in site conditions. The following inputs were required:

- > Representative environmental samples;
- Measurements of environmental parameters;
- > Comparison of the parameter results against the adopted Site Assessment Criteria (SAC);
- > The completion of an Annual Environmental Monitoring Report.

4.4 Step 4: Define the study boundaries

The assessment was limited to sampling locations listed in EPL 5984. As listed in **Appendix A** and depicted in **Figure 14-1 - Figure 14-2**.

4.5 Step 5: Develop the analytical approach (decision rule)

The site information and results obtained from this assessment scope will be compared against the NSW EPA endorsed SAC documented in **Section 3** with considerations of the land use and nearby receptors. The decision rule process is defined by the following:

- > QA/QC indicate the results are reliable;
- Laboratory Practical Quantitation Limits (PQL) or Limits of Reporting (LOR) are less than the SAC; and

> Results meet the adopted SAC and/or are within background levels and regulatory criteria.

4.6 Step 6: Specify performance or acceptance criteria

To ensure the quality of the environmental data collected during the assessment, detailed quality assurance and quality control (QA/QC) measures will be applied by ALS. The QA/QC measures will be followed from the inception of the project, during field sampling, laboratory analysis of samples and data reporting. The QAQC measures understood to have been adopted by ALS are documented in detail below within **Table 5-1**.

4.7 Step 7: Develop the plan for obtaining data

The seventh and final step involves identifying the most effective sampling and analysis design for generating the data that is required to satisfy the data quality objectives. The required sampling program is based on and accounts for the following key points:

- ▶ Requirements of Sites EPLs; No. 5984 and 12903;
- > The results will be compared against the adopted SAC for the proposed land use.

The indicators (DQI) used to identify that data obtained and provided by ALS has been done so in a way which meets project data quality objectives (DQO) summarised below.

DQO	Evaluation Criteria
Documentation completeness	 Completion of field records, chain of custody documentation, laboratory test certificates from NATA-accredited laboratories.
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	 Adequate sampling coverage of all required EPL sample points.
Precision and accuracy for sampling and analysis	 Use properly trained and qualified field personnel and achieve laboratory QC criteria.
	 Blind field duplicates to be collected at a minimum rate of 1 in 20 samples.
	 RPD's to be less than 30% for inorganic and 50% for organic analyses.
	 Rinsate samples not considered necessary as all PCoC measured by the lab were assumed to be present at the site.
	 Disposable single use items used for the collection of samples.

Table 4-1: Summary of Data Quality Objectives (DQO)

5 Sampling Methodology

Field sampling was conducted by ALS Environmental (Wollongong) as commissioned by SCC on quarterly basis. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following subsections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL's and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

5.1 Water Sampling

5.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in Appendix A. The water sampling regime includes; five (5) surface waters, one (1) located onsite and four (4) located off-site; twelve (12) groundwater monitoring wells surrounding the landfill operations; and one (1) leachate point. Sampling locations are illustrated in Figure 2 attached.

5.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. No LNAPL was reported on field sheets provided by ALS.

5.1.3 Sample Collection

Sampling is conducted independently by ALS Environmental under contract with SCC. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling was conducted in accordance with ALS sampling protocols.

5.1.4 Groundwater Sampling

Groundwater wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated wells are sampled before likely higher contaminated wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes with samples being collected using clear disposal bailers or low flow parameter stabilisation methods applied with field sheets provided to document pumping volumes and field parameters. Post sampling all samples were sealed in laboratory-prepared sampling containers appropriate for the analysis.

Surface water samples were collected as 'grab samples' from the midpoint of the source at middepth.

Post flushing, leachate samples were sampled from a tap on the discharge line directly into purpose specific, pre preserved sample containers.

All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- Minimal practical disturbance during sampling;
- Samples placed in sample containers as soon as possible;

- > Sample containers contain zero headspace;
- > Samples placed directly on ice and transported to the laboratory as soon as possible; and
- > Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

5.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- > Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- Temperature; and
- > pH (Acidity).

5.2 Dust Deposition Sampling

Measurement of dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere.

Dust collection gauges were set up for a one (1) month periods at during each quarterly sampling event. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

5.3 Surface Methane Gas Monitoring

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was below 10 km/hr. Testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in Figure 3. Transects were recorded using a Magellan SporTrak GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste.

5.4 Gas Accumulation Monitoring in Enclosed Structures

The concentration of methane gas (in units of percent volume/volume) inside all enclosed structures within 250m of emplaced waste or leachate storage facility at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling testing was conducted using a calibrated LaserOne portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Appendix F.

The internal methane concentrations for each enclosed structure were recorded by a field technician. A site plan depicting the location onsite of each structure provided in Figure 3. Any depressions or surface fissures away from the sampling grid were also investigated.

5.5 Laboratory Analysis

ALS, a NATA accredited laboratory, was contracted by SCC to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

5.6 Flare Monitoring

Landfill gases (LFG) are formed through bacterial action on emplaced waste and are a normal byproduct of Landfilling operations. Landfill gas is a mixture of many different gases, typically its major components include methane and carbon dioxide. Smaller concentrations of nitrogen, oxygen, ammonia, sulphides, hydrogen, carbon monoxide, and nonmethane organic compounds (NMOCs) and Volatile Organic Compounds (VOC's) may also be present.

When operated efficiently the use of a gas flare to burn landfill gas can significantly reduce emissions of methane, NMOCs and VOC's.

The flare was monitored, maintained and operated by LGI LTD. Copies of LFG reports for the relevant reporting period are included as Appendix G.

5.7 QAQC

The Quality Assurance and Quality Control (QA/QC) protocols for the sample program conducted by ALS are summarised in **Table 5-1**.

Protocol	Description
Sampling Team	Site personnel comprised only experienced and qualified environmental professionals trained in conducting site contamination investigations.
Sample Method	Samples obtained in laboratory prepared containers with preservatives appropriate for the required analysis.
Calibration	Equipment calibration certificates for each sampling event.
Sample Equipment	All sample equipment disposed or decontaminated between sample sites.
Field Screening	Visual and manual inspection of sample materials for potential contamination recorded on field sheets.
Chain of Custody Forms	All samples logged and transferred under appropriately completed Chain of Custody (COC) forms with Sample Receipts issued by the laboratory.
Blind Field Duplicate	At least one (1) blind field duplicate collected per 20 samples and submitted for analysis accompanied by COC forms.

Table 5-1:	Summary	of QAQC for	Sample I	Program
	e anninan y		e ann pre i	regram

6 Water Quality Results

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in Table 9 with comparison against the relevant Site Assessment Criteria (SAC). The laboratory certificates of analysis are provided in Appendix B.

6.1 Overflow Results

A total of two (2) overflow samples were taken at SWP-1 during the 2022-2023 period and are displayed in Table 6-1 below. On both occasions samples results were compliant to the EPA trigger values for pH and Suspended Solids concentrations.

Table 6-1: Summary of Overflow Events

Sample Date	рН	TSS	Ambient Temperature	Rainfall (mm) Previous 24Hrs
13/03/2023	7.9	17	24.7	38.2
1/05/2023	7.6	9	19.5	Not recorded.

6.2 **Physical Indicators**

6.2.1 Groundwater Depth

The measured depth to groundwater remained relatively consistent through the monitoring period with a low degree of variance. The Site was charactered by a shallow water table of less than 5.0 mbgl. The depth to water was measured between:

- Quarter 1 December 2022: 0.73 mbgl (BH-15) and 4.53 mbgl (BH-14);
- Quarter 2 March 2023: 0.53 mbgl (BH-15) and 4.62 mbgl (BH-14);
- Quarter 3 June 2023: 0.68 mbgl (BH-15) to 4.64 mbgl (BH-14); and
- Quarter 4 September 2023: 0.89 mbgl (BH-15) and 4.53 mbgl (BH-14).

6.2.2 Salinity

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio for of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between 125 μ S/cm - 2,200 μ S/cm (~1,500 mg/L). Marine waters may be characterised by an EC between 35,000 μ S/cm - 50,000 μ S/cm.

Groundwater

During the annual monitoring period, salinity in groundwater samples reported a relatively low degree of variance between each sampling event. The Site was generally characterised freshwater EC values in the upgradient northern portions of the Sites, tending to become more saline towards Rocklow Creek, being a tidal river system. The results were all considered to be in range of historical values.

Surface Waters

Surface water samples collected from Rocklow Creek (SWP_UP, SWC_2, SWC_Down and SWC-Down 2) reported elevated EC values up to 32,600 μ S/cm (SWC_Down, June 2023), considered to be characteristic of the tidal river system. The results were generally in range of historical values and considered satisfactory.

Results for onsite surface water location SWP1 were reported between 788 μ S/cm (Sept. 2023) and 1,500 μ S/cm (Dec. 2022) which were within the adapted TV. The results were generally in range of historical data and considered satisfactory.

Leachate

Leachate salinity for the annual monitoring period ranged between 7,380 μ S/cm (June 2023) and 9,310 μ S/cm (Dec. 2022) which were all above the TV.

Leachate Salinity has generally stabilised since the implementation of the Leachate Treatment Plant in July/August 2021.

6.2.3 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field for surface waters only. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their efficient metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulphide and Ammonia.

The ANZG (2018) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm. DO is reported by the laboratory in mg/L which be converted to a percentage.

Surface Waters

Dissolved Oxygen within onsite surface water location SWP-1 reported results between 3.43mg/L / 37.72% (Dec.2022) and 8.53 mg/L / 93.8% (Mar. 2023). Results were generally below the TV and were consistent with historical data.

Results for DO within offsite surface water locations within Rocklow Creek ranged from 4.16 mg/L / 45.74% (SWC-2, Mar. 2023) and to 6.71 mg/L / 74.1% (SWC-Up, June 6.742023). The results were generally consistent with the historical data.

Leachate

Dissolved oxygen at leachate tank LP1 ranged between 5.25 mg/L / 60.3% (Sept. 2023) and 6.22 mg/L / 60% (June 2023). The results were generally in range of the historical data.

6.2.4 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Groundwater

Results pH for the annual monitoring period for all groundwater samples were reported within the SAC. No exceedances were recorded. Groundwater was therefore measured to be generally neutral and satisfactory.

Surface Water

Results for pH in surface waters were all reported within the SAC and considered satisfactory.

Leachate

The leachate tank LP1 generally reported alkaline conditions above the SAC. The pH of LP1 ranged between 8.5 (Dec. 2022) and 9.4 (Mar. 2023). The results were considered to be within range of historical values.

6.2.5 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces. TSS was measured for surface water sample points only.

Results for TSS in Rocklow Creek samples were generally reported below the laboratory lower limit of reporting. A maximum result of 7 mg/L (SWC_2, June 2023) was reported. However, it was considered to be relatively minor. The results were considered satisfactory.

Results for TSS in onsite SWP1 were generally reported below the laboratory lower limit of reporting. A single detection of 99 mg/L was reported in March 2023. However, it was considered to be relatively minor. The results were considered satisfactory.

6.3 Inorganic Analytes

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher pH.

6.3.1 Ammonia

Groundwater

Results for ammonia in groundwater over the annual monitoring period reported exceedances above the ecological stressor value of 0.2 mg/L, 95% TV of 0.91 mg/L and pH modified TV's (see Table 14-5 - Table 14-8) in all samples. Results were considered to be significantly above the SAC and within range of the previous values.

Surface Water

Ammonia in onsite surface water at SWP-1 was reported between 0.03 mg/L (Mar. 2023) and 8.52 mg/L (Dec. 2022). Results exceeded the SAC in two (2) out of the four (4) sampling events. The results were considered to be generally consistent with previous routine monitoring samples.

Ammonia concentrations in Rocklow Creek ranged between 0.07 mg/L (SWC_Up, 05/09/2022) to 0.76 mg/L (SWC_2, Sept. 2023). Multiple results were report above the ecological stressor value of 0.2 mg/L. All results were below the 95% TV and pH modified TVs. Results are generally consistent with the historical data.

Leachate

Ammonia in leachate tank LP1 reported elevated results above the SAC between 773 mg/L (Dec. 2022) and 344 mg/L (June 2023). The results may be considered characteric of leachate. Results were within range of historical values.

6.3.2 Nitrate

Groundwater

Results for Nitrate in groundwater samples were generally reported satisfactory results below the SAC. However, exceedances were reported above the 95% TV during each quarter. The December 2022 quarter reported exceedances in BH3 of 2.39 mg/L and BH14 of 1.59 mg/L. The March 2023 quarter reported exceedances in BH3 of 3.2 mg/L and BH21 of 9.68 mg/L. The June 2023 quarter reported exceedances in BH3 of 1.37 mg/L and BH14 of 5.95 mg/L. The September 2023 quarter reported exceedances in BH3 of 4.43 mg/L, BH14 of 1.03 mg/L and BH21 of 23.7 mg/L.

Surface Water

Nitrate concentrations for all surface water were reported below the SAC and considered satisfactory.

Leachate

Nitrate concentrations for leachate tank LP1 during the annual monitoring period were reported below the SAC and considered satisfactory.

6.3.3 Nitrite

Results for nitrate in all groundwater, surface water and leachate tank LP1 were all reported below the SAC and were considered to satisfactory.

6.4 Anions

6.4.1 Chloride

The results for chloride in groundwater, surface waters and leachate were reported between 13 mg/L (BH18 Sept. 2023) and 12,100 mg/L (SWC-down Jun. 2023). In general, elevated chloride results were measured in Rocklow Creek, characteristic of the tidal river system. In comparison, upgradient groundwater results reported lower chloride concentrations. Results were generally consistent with historical data.

6.4.2 Fluoride

The results for fluoride in groundwater, surface water and leachate tank were all reported below the SAC and were generally consistent with the historical data.

6.4.3 Sulphate

Results for sulphate in groundwater generally reported satisfactory results that were in range of the historical data. Higher sulphate results were reported in Rock low Creek, which may be characteristic of the tidal river system.

6.4.4 Total Alkalinity

Surface Water

Results for total alkalinity were consistent with historical data and considered to be satisfactory.

6.4.5 Bicarbonate Alkalinity

Bicarbonate alkalinity in groundwaters were consistent with historical data and considered to be satisfactory.

6.5 Metals

6.5.1 Manganese (Total Mn)

Groundwater

Results for manganese in all groundwater, surface water and leachate tanks samples for the annual monitoring period were all reported below the 95% TV of 1.9 mg/L. The results were generally consistent with historical data.

6.5.2 Iron (total Fe)

Total iron was measured in surface water and leachate tank LP1 only. Results for total iron were reported between laboratory LOR of <1.0 mg/L and 1.67 mb/L (LP1, Sept. 2023). The results were generally consistent with historical data.

6.5.3 Iron (Dissolved Fe)

Concentrations of dissolved iron in groundwater reported results consistent with historical data and were satisfactory.

6.5.4 Calcium

Results for calcium in groundwater, surface water and leachate tank LP1 were reported below the SAC and within range of historical data. The results were therefore considered satisfactory.

6.5.5 Potassium

Results for potassium in groundwater, surface water and leachate tank LP1 were reported below the SAC and within range of historical data. The results were therefore considered satisfactory.

6.6 Organic Analytes

6.6.1 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater. However, high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- acting as proton donors/acceptors;
- providing pH buffering;
- > participating in mineral dissolution/precipitation reactions; and
- > providing carbon substrate for microbe-based biodegradation.

Results for TOC in groundwater samples were generally low and consistent with historical data. BH1c reported elevated results in comparison against the other sites. Results for BH1c ranged between 180mg/L (Mar. 2023) and 22 mg/L (Sept. 2023). However, the results for BH1c were within range of historical data.

TOC in surface water samples reported satisfactory results over the annual monitoring period.

TOC in leachate tank LP1 reported elevated results over the annual monitoring period. This may be expected of leachate water and was generally consistent with historical data.

7 Dust Gauge Results

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month for each quarterly sampling round, in general accordance with AS3580.10.1. A summary of the September 2022 results is provided in Table 7-1 below.

Quarter	Sample ID	Guideline Criteria (g/m2/month)	Total Insolvable Matter (g/m2/month)	Comment
Quarter 1	DDG1		1.2	Below SAC
4/11/2022 -	DDG2		0.8	Below SAC
7/12/2022	DDG3		1.7	Below SAC
	DDG4		2.1	Below SAC
Quarter 2	DDG1		1.5	Below SAC
1/02/2023 -	DDG2	4	0.8	Below SAC
1/03/2023	DDG3		1.5	Below SAC
	DDG4		2.4	Below SAC
Quarter 3	DDG1		0.6	Below SAC
4/05/2023 -	DDG2		0.4	Below SAC
1/06/2023	DDG3		0.3	Below SAC

Table 7-1: Summary of Dust Gauge Results

Quarter	Sample ID	Guideline Criteria (g/m2/month)	Total Insolvable Matter (g/m2/month)	Comment
	DDG4		1.3	Below SAC
Quarter 4	DDG1		0.7	Below SAC
	DDG2		1.5	Below SAC
	DDG3		1.2	Below SAC
	DDG4		9.5	Above SAC

Results for depositional dust during the 2022-2023 annual monitoring period generally reported levels of dust below the adopted assessment criteria of 4 g/m2/month. A single exceedance was report for Quarter 4 of 9.5 g/m2/month. Dust gauge locations are provided in Figure 2 attached. It is recommended that monitoring is continued in accordance with EPL 5984.

8 Methane Monitoring Results

8.1 Surface Gas Methane

The surface gas monitoring for the 2022-2023 annual monitoring period DID NOT detect any levels of methane above the EPA license limits of 500 ppm. The results were considered satisfactory. A table of results is provided in **Appendix G**.

8.2 Gas Accumulation Monitoring in Enclosed Structures

The internal methane testing for enclosed structures within 250m of the landfill during the 2022-2023 annual monitoring period DID NOT detect any levels of methane above the EPA license limits of 1% V/V. The results were considered satisfactory.

9 Flare Operations Results

Weekly average operating temperatures for the flare were supplied by LGI and displayed typical variation associated with a continuous process. Results are summarised in Chart 1 below. LGI Gas Flare reports included as **Appendix J**.

Weekly average operating temperatures supplied by LGI displayed typical variation associated with a continuous process. Weekly operating temperatures at the Flare fell below the Operational temperature Limit of 760 degrees on more often than not. This is in line with the historical data. The actions taken throughout the annual period to address the root causes are outlined in the LGI Gas Flare reports included as **Appendix G**.

Notes: Data sourced form the LGI reports provided in Appendix J.

10 Quality Assurance/Quality Control Data Evaluation (QAQC)

10.1 Field Sampling QAQC

It was understood that the sample program was completed in general accordance with the ALS standard operation procedures (SOP) which references current industry guidelines.

The QAQC procedures and indicators for field sampling procedures are summarised in Table 10-1.

Table 10-1: Sampling QAQC Procedures

	leteness	arability	sentativeness	sion	acy	Sta	tus		
QAQC Indicator	Comp	Comp	Repre	Precis	Accur	Yes	No No	N/A	Procedures and performance
Any information that could be required to evaluate measurement uncertainty for subsequent testing (analysis)				Х	Х				Field sampling records and chain of custody completed in full.
Decontamination procedures carried out between sampling events			X	X	x				Equipment such as decontaminated between samples by washing with phosphate free detergent followed by rinsing with potable water. Re-use of sampling equipment was avoided, where possible. Single use deposable sampling equipment was the preferred method.
Logs for each sample collected, including date, time, location (with GPS coordinates if possible), sampler, duplicate samples, chemical analyses to be performed, site observations and weather/environmental (i.e. surroundings) conditions. Include any diagrams, maps, photos.		х	x						Sampling field sheets were used as required.
Chain of custody fully identifying – for each sample – the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method, departure time from the site and dispatch courier(s) (where applicable)	Х	Х							COC's completed in full.
Field quality assurance/quality control results (e.g. field blank, rinsate blank, trip blank, laboratory prepared trip spike)				Х	х				Field QAQC analysed for chemical samples – field duplicate.

	eteness	arability	sentativeness	ion	ıcy	Sta	itus		
QAQC Indicator	Compl	Compa	Repres	Precis	Accura	Yes	No	N/A	Procedures and performance
Sample splitting techniques – subsampling, containers/preservation (ensure unique ID for subsequent samples provided)			Х						Samples obtained in laboratory prepared sample containers appropriate for the analytes.
Statement of duplicate frequency			Х	Х		\boxtimes			Blind field duplicates collected at 1/20 frequency
Background sample results	Х	Х				\boxtimes			Reviewed against previous investigation results.
Field instrument calibrations (when used)				Х	Х			\boxtimes	Yes field equipment was calibrated prior to use.
Sampling devices and equipment	Х	Х				\boxtimes			Manual sampling with decontamination procedures and disposable equipment.
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	Х	Х							COC's completed in full, final records from NATA laboratory attached to CoAs.

10.2 Laboratory QAQC

The QAQC procedures and indicators for laboratory analysis procedures are summarised in Table 10-2.

Table 10-2:	Laborator	y QAQC	procedures
-------------	-----------	--------	------------

	es	ility	ativ			Stat	tus		
QAQC Indicator	Completen	Comparabi	Represent	Precision	Accuracy	Yes	No	N/A	Procedures and performance
A copy of signed chain-of- custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	Х	Х							All samples were logged and transferred under appropriately completed Chain of Custody Forms.

	etenes	arability	sentativ	ion	acy	Status			
QAQC Indicator	Compl	Comp	Repres	Precis	Accura	Yes	No No	N/A	Procedures and performance
Record of holding times and a comparison with method specifications	Х	Х							Records documented in the laboratory QAQC report attached to CoA.
Analytical methods used, including any deviations	Х	Х				\boxtimes			Recorded in the CoA.
Laboratory accreditation for analytical methods used, also noting any methods used which are not covered by accreditation	X			Х					Recorded in the CoA.
Laboratory performance for the analytical method using inter- laboratory duplicates		Х			Х	\square			Records documented in the laboratory QAQC report attached to CoA.
Surrogates and spikes used throughout the full method process, or only in parts. Results are corrected for the recovery	Х	Х							Records documented in the laboratory QAQC report attached to CoA.
A list of what spikes and surrogates were run with their recoveries and acceptance criteria (tabulate)		х			Х				Records documented in the laboratory QAQC report attached to CoA.
Practical quantification limits (PQL)	Х	Х				\boxtimes			Recorded in the CoA. PQLs <sac.< td=""></sac.<>
Reference laboratory control sample (LCS) and check results	Х					\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Laboratory duplicate results (tabulate)	Х				Х	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Laboratory blank results (tabulate)	Х				Х	\boxtimes			Records documented in the laboratory QAQC report attached to CoA.
Results are within control chart limits	Х								Records documented in the laboratory QAQC report attached to CoA.
Evaluation of all quality assurance/control information listed above against the stated data quality objectives, including a quality assurance/control data evaluation	X	Х	Х	Х	X				Records documented in the laboratory QAQC report attached to CoA.

10.3 QAQC Discussion

A summary of the Data Quality performance and evaluation is summarised in **Table 10-3** below:

Table 10-3: QAQC and Data Evaluation Summary

Objective	Performance	Status
Documentation completeness	 Completion of field records; Chain of Custody (COC) documentation; Calibration certificates for equipment; NATA Laboratory Sample Receipt Notification (SRN); and NATA laboratory Certificate of Analysis (COA). Sample Location Plans. Sample field sheets. 	✓
Precision & accuracy for sampling & analysis	 Use only trained and qualified field personnel; Calibration certificates for field equipment; Appropriate sampling and field techniques; Decontamination procedures; Achieve laboratory QC criteria; and Achieve QAQC requirements for RPDs and Recovery 	✓
Identify Anomalies	 No elevated results not expected by the CSM; No labelling or sample management errors; No laboratory analyses or reporting errors 	✓
DATA completeness	 Sampling density comparison meets NSW EPA (1995) 'Sampling Design Guidelines' for or all potential contaminants of concern at all areas of environmental concern; and Systematic and judgemental sampling to provide sufficient data representative of all AECs. 	✓
Data comparability	 Use of appropriate techniques for the sampling, storage and transportation of sample media; Use of NATA certified laboratory using NEPM endorsed procedures; and Comparison with previous site information, if any. 	*
Data representative ness	 Adequate sampling coverage at all points listed in the EPL. Selection of representative samples from each sampling location; & Analysis for PCoC. Achieve laboratory QC criteria. Achieve QAQC requirements for RPDs and Recovery. 	V

The laboratory was NATA accredited, and the Practical Quantitation Limits (PQL) also referred to as Limits of Reporting (LOR) were within the acceptable levels for the investigation criteria. Laboratory certificates of analysis provided in **Appendix F** indicate that for the samples collected during the scope of works, sampling techniques, transport procedures and laboratory analysis were satisfactory. Analysis of Relative Percent Differences (RPD) was conducted of duplicates for each quarterly sampling event. RPDs calculation tables are provided in **Table 14-10** - **Table 14-16**. RPD results generally reported satisfactory differences within the criteria of 30% for organics and 50% for inorganics. Emissions of further QA/QC including rinsate samples, trip blank spikes and triplicate

were considered to me minor omissions, unlikely to impact the validity of the data. In summary, the QA/QC indicators all complied with the required standards or showed variations that would have no significant effect on the quality of the data or the conclusions of this assessment. Based on the following conclusions it is therefore determined that, for the purposes of this study, the QA/QC results are valid, and *the quality of the data is acceptable for use in this assessment:*

- > The data was representative of site conditions;
- The data was complete with comprehensive records available from all field work undertaken, and all areas of concern sampled and analysed;
- > The data was comparable for samples analysed at different times, and consistent with field observations; and
- > The data was precise and accurate based on the laboratory achievement of relevant quality control criteria.

11 Annual Environmental Assessment

11.1 Monitoring Point Summary

Field measurements and NATA laboratory results for dust and methane results from the annual 2023-2023 monitoring period reported satisfactory results. Water results including leachate, groundwater, onsite and offsite surface water reported concentrations of analytes within the range historical values. Water results from the last four (4) years have been tabulated and presented Charts 2-60 attached.

Groundwater monitoring wells continued to report elevated concentrations of key analytical indicators of leachate, most specifically ammonia. Concentration of ammonia in groundwater were reported in excess of the adopted site assessment criteria. Ammonia concentrations in offsite Rocklow Creek were reported below the 95% species protection trigger value. However, sampled water within Rocklow Creek contained levels of ammonia above the ecological stressor value 0.2mg/L.

The leachate tank also contained high concentrations of ammonia which is generally characterise of leachate.

Results of surface methane and gas accumulation monitoring recorded satisfactory results. The landfill surface cap was therefore considered intact and effective during the monitoring period.

Dust gauges across the Site largely reported satisfactory results over the 2022-2023 monitoring period.

11.2 Environmental Management

11.2.1 Landfill Operations

ENRS understand 'solid' waste (general solid waste putrescible and non-putrescible) landfill operations are ongoing at the Site. Landfill practices should be conducted in accordance with the Site's Landfill Environmental Management Plan (LEMP) and the EPA Solid Waste Landfill Guidelines (EPA; 2016).

11.3 Environmental Safeguards

Appropriate management actions are required to continue to prevent and detect potential groundwater and surface water pollution. The nearest sensitive receptors for any uncontrolled Site water and leachate include; areas of adjoining bushland; recreational users of the Minnamurra River estuary environs, down gradient stakeholders; and down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE).

It is recommended that any drainage and detention structures are inspected annually by a suitably qualified environmental professional to assess their structural integrity and identify the need for any maintenance (such as removal of deep rooted vegetation, sediment, and re-lining).

Access tracks to sampling points should be inspected and maintained prior to each quarterly sampling events.

Continue to review annual surface and groundwater monitoring results from up and down gradient of the land fill cells and offsite sampling locations within Rocklow Creek. Continue to monitor surface methane gas in order to assess the capping integrity of the landfill cells.

11.4 Monitoring Program

The Site's EPL's and monitoring regime should be reviewed annually.

Review of the 2022-2023 monitoring results indicate no significant change in environmental conditions at the Site over the past three (3) years but did indicate. Future sampling events should continue to monitor the key indicators of leachate within ground and surface waters, especially concentration of ammonia and nitrate.

Should monitoring continue to report any significant changes in analyte concentrations the need for additional monitoring locations should be reviewed, including additional groundwater monitoring bores both up and down gradient locations of areas with analytical exceedances.

It is recommended that water quality results from future monitoring rounds continue be forwarded to a suitably qualified environmental professional for review within the laboratory holding time to compare against relevant guidelines and identify any irregularities so that additional testing may be conducted within the sample holding time.

12 Conclusions

Based on the findings obtained during the 2022-2023 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow Creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within multiple groundwater bores. These

exceedances were considered to be within historical values with no significant change in site conditions;

- Offsite sample locations within Rocklow Creek generally reported satisfactory results. However, exceedances for ammonia were above the ecological stressor value.
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;
- Based on this review of the 2022-2023 annual monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Flare temperatures fell below the required KPI of 760 degrees Celsius on many occasions over the 2022-2023 monitoring period. Further detail relating to root causes and current works are available in the attached Flare Reports in **Appendix J** of this report;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

13 References

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

- CRC Care (2011). Health screening levels for petroleum hydrocarbons in soil and groundwater.
- DEC NSW. (2007). Guidelines for the Assessment and Management of Groundwater Contamination.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council, May.

NSW EPA. (2014). Waste Classification Guidelines. Part 1 Classifying Waste.

NSW EPA. (2020). Guidelines for consultants reporting on contaminated land.

NSW EPA (2022) Approved methods for the sampling and analysis of water pollutants in NSW

NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling design part 1: Application .

NSW EPA. (2022). Sampling design guidelines for contaminated land. Sampling Design Part 2: Interpretation.

SafeWork NSW. (2014). Guidelines for Managing Asbestos in or on Soil.

SafeWork NSW. (2022). Code of Practice on How to Safely Remove Asbestos.

- WA DOH. (2009). *Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia.* Perth, WA: Western Australia Department of Health.
- WA DOH. (2021). *Guidelines for the assessment, remediation and management of asbestos-contaminated sites in Western Australia.* Perth, WA: Western Australia Department of Health.

Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales

NSW EPA (Mar. 2020) Environmental Protection Licence (EPL) 5984

NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903

NSW Government (1997). Protection of the Environment Operations Act.

NSW Government (2005). Protection of the Environment (Waste) Regulation.

NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B – Waste Landfills.

ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.

ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council. ISBN 09578245 0 5 (set).

14 Limitations

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to Site.

ENRS derived the data in this report primarily from visual inspections, and, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e. the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.

The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of Site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g. changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.

FIGURES

ENRS0033_SCC Dunmore Landfill_AEMR 2022-2023

ENRS	Client:	Shellharbour City Council	Drawn:	PL	Figure:	3
Environment & Natural Resource Solutions	Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
100 James Dead Charleston Handa NSW 2525	Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Surface Gas
Tel: 02 4448 5490 Fax: 02 90374708		44 Buckleys Rd. Dunmore, NSW.	Status:	Rev 1		Sample
projects@enrs.com.au www.enrs.com.au		2529				transects

TABLES

								Q	uarterly V	T Vater Mo	ABLE	E 14-1: g Result	Tota is - Dece	I Conc ember 20	entra 22: Dun	tion R	esults ecycling	S and Wa	ste Depot	t										
GILs -Trigger Values for F	reshwater (Protection of 9	5% of Species) ^A			-	-	-	-	-	1.9	-	-	-	0.9 (pH 8)) -	0.7	-	-	-	-	-	-	-	-	6.5 - 8.5	2200	-	-	-	
GILs -Trigger Values for M	farine Water (Protection of	f 95% of Species) ^A			-	-	-	-	-	-	-	-	-	0.91 (pH 8)	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
Australian Drinking Water	Guidelines (2018) ^C			Health	-	-	-	-	-	0.5	-		1.5	-	3	50	-	-		-	-	-	-	-	6.5 - 8.5	-	-	-	-	
			T	Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicar bonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Suffate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Æ	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Total Insoluble Matter	Comments
	1			Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl 0.01	mbgl 0.1	
EW2205534001	BH1c	Groundwater	3	Dec 2022	904	133			219	0.11		8.16	0.5	345.00	< 0.01	< 0.01	203	2,780	2,780	< 10					7.00	7,160	25.2	3.00		-
EW2205534002	BH3	Groundwater	5	Dec 2022	140	126			44	0.02		< 0.05	0.2	8.51	0.27	2.39	17	330	330	158					8.10	1,160	17.6	3.01		-
EW2205534003	BH4	Groundwater	6	Dec 2022	50	86			16	0.09		1.70	0.1	1.62	0.01	0.01	14	297	297	61					8.20	692	17.6	4.24		-
EW2205534004	BH9	Groundwater	18	Dec 2022	392	180			69	0.68		0.32	0.4	124.00	< 0.01	< 0.01	79	1,820	1,820	< 10					7.30	3,580	18.7	2.94		-
EW2205534005	BH12r	Groundwater	17	Dec 2022	107	154			28	0.51		6.52	0.2	3.74	< 0.01	0.01	21	568	568	119					7.30	1,340	19.4	4.15		-
EW2205534006	BH13	Groundwater	10	Dec 2022	204	185			17	0.32		1.82	0.2	3.32	0.03	0.19	23	779	779	64					7.30	1,770	20.3	4.11		-
EW2205534007	BH14	Groundwater	11	Dec 2022	33	82			14	0.08		0.07	0.6	0.93	0.01	1.57	18	334	334	80					7.00	756	19.7	4.53		-
EW2205534008	BH15	Groundwater	7	Dec 2022	447	131			185	0.31		10.20	0.2	10.30	< 0.01	0.14	37	467	467	534					7.40	2,650	18.2	0.73		-
EW2205534010	BH18	Groundwater	25	Dec 2022	76	87			18	0.08		1.85	0.2	1.51	< 0.01	< 0.01	22	458	458	12					7.20	880	18.3	1.97		-
EW2205534009	BH19r	Groundwater	16	Dec 2022	52	75			37	0.07		0.97	0.2	2.35	0.01	< 0.01	19	287	287	53					8.40	724	17.6	4.53		-
EW2205534011	BH21	Groundwater	23	Dec 2022	429	131			18	0.56		0.13	0.4	4.92	< 0.01	< 0.01	41	834	834	149					7.30	2,560	20.9	2.98		-
EW2205534012	BH22	Groundwater	24	Dec 2022	235	94			43	0.02		0.12	0.4	55.80	< 0.01	0.01	34	606	606	283					8.10	1,910	17.3	2.77		-
EW2205529001	SWP1	Surfacewater	1	Dec 2022	225	65	41	213	20	0.84	0.14	0.06	0.4	8.52	0.04	0.02	30	464	464	96	3.43		14	2.70	7.50	1,500	19.5			-
EW2205529003	SWC_up	Surfacewater	20	Dec 2022	6,620	145	378	3,280	122	0.17	0.89	< 0.05	0.6	0.32	< 0.01	0.10	8	150	150	817	4.94		< 5	14.00	7.00	17,100	19.0			-
EW2205529002	SWC_2	Surfacewater	19	Dec 2022	5,380	124	308	2,680	101	0.17	1.20	< 0.05	0.6	0.53	0.01	0.11	9	141	141	680	5.80		10	19.70	7.00	14,100	18.7			-
EW2205529004	SWC_down	Surfacewater	21	Dec 2022	8,410	184	493	4,310	160	0.13	0.68	< 0.05	0.7	0.58	< 0.01	0.07	9	154	154	1,060	7.07		< 5	10.70	7.00	21,600	19.0			-
EW2205529005	SWC_down_2	Surfacewater	22	Dec 2022	11,200	242	678	5,920	216	0.11	0.48	< 0.05	0.8	0.32	< 0.01	0.04	7	142	142	1,500	4.49		< 5	6.30	7.00	29,100	18.7			-
EW2205533001	Leachate Storage Tank LP1	Leachate	2	Dec 2022	1,710	39			363	0.10	1.35		0.2	773.00	< 1.00	< 1.00	506	2,600	3,600	< 100	5.58	63.2			8.50	9,310	19.9			-

									Quarterly	T Water M	ABLE Monitori	1 4-2: ing Resu	Tota ults - Ma	I Conc rch 2023	entra : Dunm	tion R ore Recy	esults ycling ar	nd Waste	e Depot											
GILs -Trigger Values for F	reshwater (Protection of 9	95% of Species) ^A			-	-	-	-	-	1.9	-	-	-	0.9 (pH 8)	-	0.7	-	-	-	-	-	-	-	-	6.5 - 8.5	2200	-	-	-	
GILs -Trigger Values for N	Marine Water (Protection o	of 95% of Species) ^A		_	-	-	-	-			-	-	-	0.91 (pH 8)	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	
Australian Drinking Water	Guidelines (2018) ^C			Health	-		-	-	-	0.5		-	1.5	-	3	50	-	-	-		-	-	-	-	6.5 - 8.5	-	-	-	•	
	Ĩ		T	Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-	-	250	•	-	-	5	6.5 - 8.5	-	-	-		
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	H	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Total Insoluble Matter	Comments
	1	[1	Laboratory PQL	mg/∟ 1	1 1	1	1 1	mg/∟ 1	0.001	0.05	0.05	mg/L 0.1	0.01	0.01	0.01	mg/L 1	mg/L 1	mg/∟ 1	1 1	0.01	% 0.1	mg/∟ 5	0.1	рн 0.01	μ5/cm 1	0.1	0.01	0.1	
EW2300850001	BH1c	Groundwater	3	Mar 2023	1,060	148			240	0.11		12.40	0.4	285.00	< 0.01	< 0.01	180	2,650	2,650	< 10					7.10	7,960	24.8	3.02		-
EW2300850002	ВНЗ	Groundwater	5	Mar 2023	140	134			36	0.07		0.18	0.2	10.60	0.14	3.20	17	318	318	143					7.30	1,230	18.5	3.10		-
EW2300850003	BH4	Groundwater	6	Mar 2023	51	92			16	0.10		2.19	0.1	2.00	0.01	< 0.01	11	261	261	51					7.40	688	18.3	4.32		-
EW2300850004	ВН9	Groundwater	18	Mar 2023	382	183			88	0.66		0.81	0.4	122.00	< 0.01	0.02	64	1,760	1,760	< 10					7.20	3,690	18.8	3.09		-
EW2300850005	BH12r	Groundwater	17	Mar 2023	174	207			28	0.55		9.67	0.2	4.24	< 0.01	< 0.01	20	619	619	208					6.80	1,670	19.7	4.23		-
EW2300850006	BH13	Groundwater	10	Mar 2023	245	206			21	0.42		3.45	0.2	5.31	< 0.01	< 0.01	28	744	744	58					6.90	1,930	20.7	4.19		-
EW2300850007	BH14	Groundwater	11	Mar 2023	30	96			14	0.11		0.55	0.6	1.18	< 0.01	< 0.01	13	359	359	73					7.00	762	20.0	4.62		-
EW2300850008	BH15	Groundwater	7	Mar 2023	476	137			174	0.27		9.33	0.2	8.12	0.03	0.17	34	471	471	366					6.80	2,570	18.5	0.53		-
EW2300850010	BH18	Groundwater	25	Mar 2023	31	80			11	0.14		2.02	0.2	1.02	< 0.01	< 0.01	14	272	272	< 10					6.80	601	20.8	2.10		-
EW2300850009	BH19r	Groundwater	16	Mar 2023	29	73			41	0.06		0.89	0.2	2.28	0.02	< 0.01	6	339	339	26					7.50	638	18.3	4.52		-
EW2300850011	BH21	Groundwater	23	Mar 2023	339	169			23	0.51		0.26	0.4	2.64	0.32	9.68	33	851	851	145					7.20	2,480	21.7	2.97		-
EW2300850012	BH22	Groundwater	24	Mar 2023	240	113			39	0.04		0.06	0.4	35.00	< 0.01	< 0.01	29	651	651	223					7.50	2,250	18.5	2.60		-
EW2300849001	SWP1	Surfacewater	1	Mar 2023	147	67	33	161	13	0.57	1.45	0.20	0.3	0.03	< 0.01	< 0.01	24	397	397	53	8.53		99	40.00	7.50	1,210	21.9			-
EW2300849003	SWC_up	Surfacewater	20	Mar 2023	8,150	180	552	4,750	173	0.20	0.61	0.10	0.7	0.07	< 0.01	0.02	7	138	138	913	4.79		< 5	3.20	7.10	24,200	22.3			-
EW2300849002	SWC_2	Surfacewater	19	Mar 2023	9,180	201	633	5,460	194	0.18	0.46	0.08	0.8	0.19	0.01	< 0.01	7	114	114	1,390	4.16		< 5	2.20	7.30	27,500	22.9			-
EW2300849004	SWC_down	Surfacewater	21	Mar 2023	7,720	170	522	4,510	163	0.22	0.59	0.05	0.8	0.25	0.01	0.01	7	131	131	886	4.92		< 5	2.90	7.20	23,800	23.8			-
EW2300849005	SWC_down_2	Surfacewater	22	Mar 2023	7,640	170	513	4,340	159	0.22	0.58	< 0.05	0.7	0.12	0.01	0.01	< 1	127	127	835	5.26		< 5	2.90	7.30	23,300	23.7			-
EW2300847001	Leachate Storage Tank LP1	Leachate	2	Mar 2023	1,460	37			393	0.09	1.24		0.2	432.00	2.16	< 0.10	373	2,060	3,150	< 20	5.66	70.5			9.40	9,260	24.8			-

									Quarterly	T y Water	ABLE Monitor	14-3: ing Resu	Tota l ults - Ju	l Conc ne 2023:	entra Dunmo	tion R ore Recy	esults	d Waste	Depot											
GILs -Trigger Values for	Freshwater (Protection of 9	5% of Species) ^A			-	-	-	-	-	1.9	-	-	-	0.9 (pH 8)	-	0.7	-	-	-	-	-	-	-	-	6.5 - 8.5	2200	-	-	-	
GILs -Trigger Values for	Marine Water (Protection of	95% of Species) ^A			-	-	-	-	-	-	-	-	-	0.91 (pH 8)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Australian Drinking Wate	er Guidelines (2018) ^C			Health	-	-	-	-	-	0.5	-	-	1.5	-	3	50		-		-	-	-	-	-	6.5 - 8.5	-	-	-	-	
				Aesthetic	250		-	180		0.1	0.3	0.3		0.5	-			-		250			-	5	6.5 - 8.5		-	-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Æ	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Total Insoluble Matter	Comments
			1	Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl 0.01	mbgi 0.1	-
EW2302416001	BH1c	Groundwater	3	Jun 2023	970	116			207	0.10		11.60	0.5	298.00	< 0.01	< 0.01	186	2,600	2,600	< 10					7.00	7,945		3.09		-
EW2302416002	внз	Groundwater	5	Jun 2023	123	101			31	0.08		0.27	0.2	12.30	0.13	1.37	22	370	370	146					7.50	1,200	25.9	3.08		-
EW2302416003	BH4	Groundwater	6	Jun 2023	35	94			16	0.10		2.59	0.1	2.04	< 0.01	< 0.01	10	310	310	70					7.40	751	18.9	4.28		-
EW2302416004	ВН9	Groundwater	18	Jun 2023	516	181			76	0.71		0.89	0.6	141.00	< 0.01	0.03	76	1,790	1,790	50					7.20	4,120	18.0	3.86		-
EW2302416005	BH12r	Groundwater	17	Jun 2023	246	185			27	0.53		9.38	0.3	3.59	0.07	0.39	24	571	571	178					6.80	1,930	21.1	4.25		-
EW2302416006	BH13	Groundwater	10	Jun 2023	308	213			29	0.41		3.40	0.2	9.59	0.02	0.37	38	812	812	67					6.80	2,260	21.9	4.22		-
EW2302416007	BH14	Groundwater	11	Jun 2023	36	106			12	0.12		0.05	0.7	1.40	0.06	5.94	12	422	422	50					6.90	958	21.1	4.64		-
EW2302416008	BH15	Groundwater	7	Jun 2023	340	112			138	0.26		9.12	0.2	8.74	< 0.01	0.01	39	507	507	366					7.00	2,250	17.1	0.68		-
EW2302416010	BH18	Groundwater	25	Jun 2023	16	60			10	0.07		1.31	0.2	1.05	< 0.01	< 0.01	14	267	267	< 10					6.80	511	20.7	2.26		-
EW2302416009	BH19r	Groundwater	16	Jun 2023	38	74			49	0.06		1.06	0.2	1.85	< 0.01	< 0.01	14	336	336	39					7.40	731	18.9	4.54		-
EW2302416011	BH21	Groundwater	23	Jun 2023	353	125			16	0.47		0.76	0.4	3.60	< 0.01	< 0.01	38	854	854	114					7.20	2,550	22.6	3.01		-
EW2302416012	BH22	Groundwater	24	Jun 2023	183	87			18	0.07		0.96	0.8	4.11	< 0.01	< 0.01	26	424	424	224					7.30	1,580	19.2	2.40		-
EW2302415001	SWP1	Surfacewater	1	Jun 2023	173	73	33	156	17	0.12	0.16	< 0.05	0.3	0.96	0.04	< 0.01	25	431	431	39	5.90		< 5	1.40	7.70	1,080	13.4			-
EW2302415003	SWC_up	Surfacewater	20	Jun 2023	7,090	180	465	3,840	145	0.07	0.79	< 0.05	0.7	0.20	0.02	0.14	9	139	139	968	6.71		5	7.40	7.20	18,800	15.4			-
EW2302415002	SWC_2	Surfacewater	19	Jun 2023	6,870	155	380	3,280	122	0.07	0.88	< 0.05	0.6	0.29	0.02	0.13	10	141	141	908	6.32		7	8.00	7.20	17,400	15.0			-
EW2302415004	SWC_down	Surfacewater	21	Jun 2023	12,100	288	765	6,440	244	0.05	0.34	< 0.10	0.9	0.69	0.02	0.05	7	151	151	2,000	6.05		< 5	4.00	7.20	32,600	16.9			-
EW2302415005	SWC_down_2	Surfacewater	22	Jun 2023	9,680	229	592	5,000	210	0.06	0.53	< 0.10	0.8	0.28	0.02	0.08	8	144	144	1,560	6.55		< 5	5.10	7.30	25,000	15.9			-
EW2302414001	Leachate Storage Tank LP1	Leachate	2	Jun 2023	1,810	39			375	0.10	1.29		0.3	344.00	6.96	< 0.10	407	1,840	2,780	< 50	6.22	60.0			9.30	7,380	13.8			-

								Qı	arterly W	T /ater Mo	ABLE	14-4: g Results	Tota s - Septe	I Conc ember 20	entra 23: Dur	tion R	esults ecycling	and Wa	ste Depo	t										
GILs -Trigger Values for F	Freshwater (Protection of 9	5% of Species) ^A			-	-	-	-	-	1.9	-			0.9 (pH 8)	-	0.7	-	-	-	-	-	-	-	-	6.5 - 8.5	2200	-	-	-	
GILs -Trigger Values for I	Marine Water (Protection o	f 95% of Species) ^A			-	-	-	-	-	-	-	-	-	0.91 (pH 8)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Australian Drinking Water	r Guidelines (2018) ^C			Health	-	-	-	-	-	0.5	-		1.5	-	3	50	-	-	-		-	-	-	-	6.5 - 8.5	-	-	-	-	
	ľ		T	Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	-	
Lab Report No.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Suffate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Æ	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Total Insoluble Matter	Comments
	1			Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl 0.01	mbgl 0.1	-
EW2303854001	BH1c	Groundwater	3	Sep 2023	1,110	135			242	0.12		9.04	0.4	314.00	< 0.01	< 0.10	222	2,760	2,760	< 10					6.90	7,610	23.9	3.25		-
EW2303854002	ВНЗ	Groundwater	5	Sep 2023	260	137			31	0.21		2.90	0.1	29.20	0.03	0.08	22	483	483	210					7.30	1,650	17.8	3.13		-
EW2303854003	BH4	Groundwater	6	Sep 2023	55	132			20	0.12		3.08	0.1	1.68	< 0.01	0.14	11	381	381	115					7.30	880	18.4	4.40		-
EW2303854004	BH9	Groundwater	18	Sep 2023	548	216			84	0.56		2.45	0.4	122.00	< 0.01	0.01	58	1,700	1,700	167					7.10	3,760	17.7	3.25		-
EW2303854005	BH12r	Groundwater	17	Sep 2023	223	183			27	0.54		9.62	0.2	3.37	0.01	0.15	21	516	516	184					6.80	1,610	20.6	4.38		-
EW2303854006	BH13	Groundwater	10	Sep 2023	330	219			29	0.45		3.34	0.2	8.64	< 0.01	4.43	36	872	872	93					6.70	2,210	21.5	4.39		-
EW2303854007	BH14	Groundwater	11	Sep 2023	36	154			16	0.14		0.15	0.5	1.42	< 0.01	1.03	12	563	563	37					6.80	1,020	21.0	4.83		-
EW2303854008	BH15	Groundwater	7	Sep 2023	459	133			153	0.30		10.40	0.2	6.24	0.03	< 0.01	37	519	519	391					7.00	2,180	14.3	0.89		-
EW2303854010	BH18	Groundwater	25	Sep 2023	13	70			9	0.24		2.43	0.2	1.44	< 0.01	< 0.01	14	283	283	4					6.60	470	18.6	2.28		-
EW2303854009	BH19r	Groundwater	16	Sep 2023	48	104			42	0.08		0.99	0.1	3.05	< 0.01	0.06	13	358	358	58					7.30	765	18.1	4.56		-
EW2303854011	BH21	Groundwater	23	Sep 2023	328	196			28	0.23		0.16	0.3	1.92	0.06	23.70	29	783	783	183					6.90	2,310	20.8	3.15		-
EW2303854012	BH22	Groundwater	24	Sep 2023	147	159			16	0.28		25.90	0.3	5.14	< 0.10	< 0.10	33	428	428	326					6.60	1,470	17.5	2.42		-
EW2303862001	SWP1	Surfacewater	1	Sep 2023	145	58	26	127	18	0.26	0.17	0.06	0.3	0.09	< 0.01	< 0.01	20	316	316	23	4.16		< 5	2.20	7.70	788	14.6			-
EW2303862003	SWC_up	Surfacewater	20	Sep 2023	8,240	253	608	5,060	190	0.11	0.63	0.08	0.7	0.54	0.02	0.09	8	169	169	922	5.02		< 5	4.60	7.20	22,000	15.4			-
EW2303862002	SWC_2	Surfacewater	19	Sep 2023	10,000	283	726	5,940	250	0.28	< 0.10	< 0.10	0.8	0.76	0.02	0.06	8	163	163	1,720	4.91		< 5	3.50	7.30	26,800	15.6			-
EW2303862004	SWC_down	Surfacewater	21	Sep 2023	11,300	315	843	6,970	247	0.03	0.36	< 0.10	0.8	0.51	0.01	0.06	6	160	160	1,840	5.37		< 5	3.00	7.40	30,300	15.7			-
EW2303862005	SWC_down_2	Surfacewater	22	Sep 2023	7,170	214	508	4,310	165	0.05	0.54	< 0.05	0.6	0.25	0.01	0.10	7	150	150	795	6.27		< 5	4.60	7.40	18,800	14.7			-
EW2303859001	Leachate Storage Tank LP1	Leachate	2	Sep 2023	2,030	45			349	0.11	1.67		0.2	391.00	12.20	< 2.00	405	1,970	2,710	< 100	5.25	60.3			8.90	8,180	19.9			-

	T March 2023 Qu	ABLE 14-6 Jarter: Dur	: Amm	onia Re Recycli	esults ing and	I Waste De	epot
			рН	Assessme	ent Criteria	Result	
Ammonia Res Trigger V	sults comapred against the alues - ANZACC (2000) Ta	e pH Modified bble 8.3.7	pH (lab)	pH Modifed Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonai As N	Comment
Lab Roport No	Total Samula ID	Concentrations - PQL	0.1	-	-	0.01	
EW2300850001	BH1c	2/03/2023	рп 7.1	2.26	3.56	285	> TV
EW2300850002	внз	2/03/2023	7.3	1.88	2.84	10.6	> TV
EW2300850003	BH4	2/03/2023	7.4	1.75	2.49	2	> TV
EW2300850004	BH9	2/03/2023	7.2	1.99	3.2	122	> TV
EW2300850005	BH12r	2/03/2023	6.8	2.33	4.55	4.24	> TV
EW2300850006	BH13	2/03/2023	6.9	2.26	4.24	5.31	> TV
EW2300850007	BH14	2/03/2023	7	2.18	3.91	1.18	< TV
EW2300850008	BH15	2/03/2023	6.8	2.33	4.55	8.12	> TV
EW2300850010	BH18	2/03/2023	6.8	2.33	4.55	1.02	< TV
EW2300850009	BH19r	2/03/2023	7.5	1.61	2.15	2.28	> TV
EW2300850011	BH21	2/03/2023	7.2	1.99	3.2	2.64	> TV
EW2300850012	BH22	2/03/2023	7.5	1.61	2.15	35	> TV
EW2300849001	SWP1	2/03/2023	7.5	1.61	2.15	0.03	< TV
EW2300849003	SWC_up	2/03/2023	7.1	2.09	3.56	0.07	< TV
EW2300849002	SWC_2	2/03/2023	7.3	1.88	2.84	0.19	< TV
EW2300849004	SWC_down	2/03/2023	7.2	1.99	3.2	0.25	< TV
EW2300849005	SWC_down_2	2/03/2023	7.3	1.88	2.84	0.12	< TV
EW2300847001	Leachate Storage Tank LP1	2/03/2023	9.4	0.21*	1.7	432	> TV

 * No guideline is provided for a pH of above 8.9. Therefore the TV for pH 8.9 was abdopted.

				pН	Assessme	nt Criteria	Result	
Ammonia Resu	Ilts comapred ANZAC	against the pH Modified T C (2000) Table 8.3.7 Tota	rigger Values -	2 pH (lab)	pH Modifed Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonai As N	Comment
Lab Report No.		Sample ID.	Date	pH	mg/L	mg/L	mg/L	
EW2300850001		BH1c	2/03/2023	7.00	2.180	3.560	298	> TV
EW2300850002		BH3	2/03/2023	7.50	1.161	2.150	12	> TV
EW2300850003		BH4	2/03/2023	7.40	1.750	2.490	2	> TV
EW2300850004		BH9	2/03/2023	7.20	1.990	3.200	141	> TV
EW2300850005		BH12r	2/03/2023	6.80	2.330	4.550	4	> TV
EW2300850006	Groupdwater	BH13	2/03/2023	6.80	2.330	4.550	10	> TV
EW2300850007	Gloundwater	BH14	2/03/2023	6.90	2.260	4.240	1	< TV
EW2300850008		BH15	2/03/2023	7.00	2.180	3.560	9	> TV
EW2300850010		BH18	2/03/2023	6.80	2.330	4.550	1	< TV
EW2300850009		BH19r	2/03/2023	7.40	1.750	2.490	2	> TV
EW2300850011		BH21	2/03/2023	7.20	1.990	3.200	4	> TV
EW2300850012		BH22	2/03/2023	7.30	1.880	2.840	4	> TV
EW2300849001		SWP1	2/03/2023	7.70	1.320	1.560	1	< TV
EW2300849003		SWC_up	2/03/2023	7.20	1.990	3.200	0	< TV
EW2300849002	Rocklow Creek Surface Water	SWC_2	2/03/2023	7.20	1.990	3.200	0	< TV
EW2300849004		SWC_down	2/03/2023	7.20	1.990	3.200	1	< TV
EW2300849005		SWC_down_2	2/03/2023	7.30	1.880	2.840	0	< TV

TABLE 14-7: Ammonia Results March 2023 Quarter: Dunmore Recycling and Waste Depot

				рН	Assessme	nt Criteria	Result	
Ammonia Resu	Its comapred ANZAC	against the pH Modified T C (2000) Table 8.3.7	Frigger Values -	(ца)) Нд	pH Modifed Trigger Values - 95% Freshwater	pH Modifed Trigger Values - 95% Marine Water	Ammonal As N	Comment
Lab Damast No.	1	Total	Concentrations - PQL	0.1	•	-	0.01	
Lab Report No.		Sample ID.	Date	pН	mg/L	mg/L	mg/L	
EW2300850001		BH1c	2/03/2023	6.90	2.260	4.424	314	> TV
EW2300850002		BH3	2/03/2023	7.30	1.880	2.840	29.2	> TV
EW2300850003		BH4	2/03/2023	7.30	1.880	2.840	1.68	< TV
EW2300850004		BH9	2/03/2023	7.10	2.090	3.560	122	> TV
EW2300850005		BH12r	2/03/2023	6.80	2.330	4.550	3.37	> TV
EW2300850006	Groundwater	BH13	2/03/2023	6.70	2.380	4.830	8.64	> TV
EW2300850007	Gloundwater	BH14	2/03/2023	6.80	2.330	4.550	1.42	< TV
EW2300850008		BH15	2/03/2023	7.00	2.180	3.910	6.24	> TV
EW2300850010		BH18	2/03/2023	6.60	2.430	5.070	1.44	< TV
EW2300850009		BH19r	2/03/2023	7.30	1.880	2.840	3.05	> TV
EW2300850011		BH21	2/03/2023	6.90	2.260	4.240	1.92	< TV
EW2300850012		BH22	2/03/2023	6.60	2.430	5.070	5.14	> TV
EW2300849001		SWP1	2/03/2023	7.70	1.320	1.560	0.09	< TV
EW2300849003		SWC_up	2/03/2023	7.20	1.990	3.200	0.54	< TV
EW2300849002	Rocklow Creek Surface Water	SWC_2	2/03/2023	7.30	1.880	2.840	0.76	< TV
EW2300849004		SWC_down	2/03/2023	7.40	1.750	2.490	0.51	< TV
EW2300849005		SWC_down_2	2/03/2023	7.40	1.750	2.490	0.25	< TV

TABLE 14-8: Ammonia Results March 2023 Quarter: Dunmore Recycling and Waste Depot

TABLE 14-9: Duplicate Groundwater Sample Results and QC Data

Lab Report No.				EW2205534004	EW2205534013		
Sample No.				BH9	GWDuplicate		
Sample type				Groundwater	GWQC		חחח
EPA No,				18	QC1		RPD
Date Sampled				5/12/2022	5/12/2022		
Analyte	Units	PQL	5 x PQL	Result	Result		
Chloride	mg/L	1	5	392	390	\bigcirc	0.51
Calcium	mg/L	1	5	180	177	\bigcirc	1.68
Potassium	mg/L	1	5	69	68		1.46
Manganese	mg/L	0.001	0.005	0.679	0.670	\diamond	1.33
Dissolved Iron	mg/L	0.05	0.25	0.32	0.31	\bigcirc	3.17
Fluoride	mg/L	0.1	0.5	0.40	0.30		28.57
Ammonia as N	mg/L	0.01	0.05	124.00	119.00		4.12
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01		0.00
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	\bigcirc	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	\diamond	0.00
Total Organic Carbon	mg/L	1	5	79	80	\diamond	1.26
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	1,820	1,820	⊘	0.00
Total Alkalinity as CaCO3	mg/L	1	5	1,820	1,820		0.00
Sulfate as SO4 - Turbidimetric	mg/L	1	5	< 10	< 10		0.00
рН	рН	0.01	0.05	7.30	7.30	>	0.00
Electrical Conductivity (Non Compensated)	μS/cm	1	5	3,580	3,580		0.00
Temperature	°C	0.1	0.5	18.7	18.7		0.00
Standing Water Level	mbgl	-		2.94	2.94		0.00

TABLE 14-10: Duplicate Surface Water Results and QC Data

Lab Report No.				EW2205529002	EW2205529006		
Sample No.				SWC_2	SWDuplicate		
Sample type				Surfacewater	OffSiteSWQC	ĺ	חחח
EPA No,				19	QC2	1	RPD
Date Sampled				2/12/2022	2/12/2022	1	
Analyte	Units	PQL	5 x PQL	Result	Result		
Chloride	mg/L	1	5	5,380	5,390		0.19
Calcium	mg/L	1	5	124	127		2.39
Potassium	mg/L	1	5	101	106	\mathbf{O}	4.83
Manganese	mg/L	0.001	0.005	0.165	0.161	\bigcirc	2.45
Total Iron	mg/L	0.05	0.25	1.20	1.11	\bigcirc	7.79
Dissolved Iron	mg/L	0.05	0.25	< 0.05	< 0.05		0.00
Fluoride	mg/L	0.1	0.5	0.6	0.6	\bigcirc	0.00
Ammonia as N	mg/L	0.01	0.05	0.53	0.60	\bigcirc	12.39
Nitrite as N	mg/L	0.01	0.05	0.01	0.01		0.00
Nitrate as N	mg/L	0.01	0.05	0.11	0.11		0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	0.12	0.12	\bigcirc	0.00
Total Organic Carbon	mg/L	1	5	9	9	\bigcirc	0.00
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	141	132		6.59
Total Alkalinity as CaCO3	mg/L	1	5	141	132		6.59
Sulfate as SO4 - Turbidimetric	mg/L	1	5	680	704		3.47
Dissolved Oxygen	mg/L	0.01	0.05	5.80	5.81		0.17
рН	рН	0.01	0.05	7.00	7.00		0.00
Electrical Conductivity (Non Compensated)	μS/cm	1	5	14,100	14,100		0.00
Temperature	°C	0.1	0.5	18.7	18.7		0.00

TABLE 14-11: Duplicate Groundwater Sample Results and QC Data

Lab Report No.				EW2300850010	EW2300850013		
Sample No.				BH18	GWDuplicate	1	
Sample type				Groundwater	GWQC		חחח
EPA No,				25	QC1		RPD
Date Sampled				2/03/2023	2/03/2023		
Analyte	Units	PQL	5 x PQL	Result	Result		
Chloride	mg/L	1	5	31	32	>	3.17
Calcium	mg/L	1	5	80	81	\bigcirc	1.24
Potassium	mg/L	1	5	11	11	\bigcirc	0.00
Manganese	mg/L	0.001	0.005	0.139	0.142	\bigcirc	2.14
Dissolved Iron	mg/L	0.05	0.25	2.02	2.02	\mathbf{S}	0.00
Fluoride	mg/L	0.1	0.5	0.20	0.20		0.00
Ammonia as N	mg/L	0.01	0.05	1.02	1.10		7.55
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01		0.00
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	\bigcirc	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01		0.00
Total Organic Carbon	mg/L	1	5	14	14		0.00
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	272	281	8	3.25
Total Alkalinity as CaCO3	mg/L	1	5	272	281		3.25
Sulfate as SO4 - Turbidimetric	mg/L	1	5	< 10	< 10		0.00
рН	рН	0.01	0.05	6.80	6.80		0.00
Electrical Conductivity (Non Compensated)	μS/cm	1	5	601	601		0.00
Temperature	°C	0.1	0.5	20.8	20.8		0.00
Standing Water Level	mbgl	-		2.10	2.10		0.00

TABLE 14-12: Duplicate Surface Water Results and QC Data

Lab Report No.				EW2300849001	EW2300849006		
Sample No.				SWP1	SWDuplicate		
Sample type				Surfacewater	OffSiteSWQC	חחח	
EPA No,				1	QC2	RPD	
Date Sampled				1/03/2023	1/03/2023		
Analyte	Units	PQL	5 x PQL	Result	Result		
Chloride	mg/L	1	5	147	154	4.65	5
Calcium	mg/L	1	5	67	66	1.50)
Potassium	mg/L	1	5	13	13	0.00)
Manganese	mg/L	0.001	0.005	0.570	0.426	28.9	2
Total Iron	mg/L	0.05	0.25	1.45	1.33	8.63	}
Dissolved Iron	mg/L	0.05	0.25	0.20	0.19	S .13	3
Fluoride	mg/L	0.1	0.5	0.3	0.3	0.00)
Ammonia as N	mg/L	0.01	0.05	0.03	0.01	🚫 100.C)0
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00)
Nitrate as N	mg/L	0.01	0.05	< 0.01	0.01	0.00)
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	0.01	0.00)
Total Organic Carbon	mg/L	1	5	24	16	8 40.0	0
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	397	435	9 .13	3
Total Alkalinity as CaCO3	mg/L	1	5	397	435	9 .13	3
Sulfate as SO4 - Turbidimetric	mg/L	1	5	53	54	1.87	7
Dissolved Oxygen	mg/L	0.01	0.05	8.53	8.51	0.23	}
рН	рН	0.01	0.05	7.50	7.70	2.63	}
Electrical Conductivity (Non Compensated)	μS/cm	1	5	1,210	1,210	0.00)
Temperature	°C	0.1	0.5	21.9	21.9	0.00)

TABLE 14-13: Duplicate Groundwater Sample Results and QC Data

Lab Report No.				EW2302416010	EW2302416013			
Sample No.				BH18	GWDuplicate			
Sample type				Groundwater	GWQC			
EPA No,			25	QC1		RPD		
Date Sampled			2/06/2023	2/06/2023				
Analyte	Units	PQL	5 x PQL	Result	Result			
Chloride	mg/L	1	5	16	16	\mathbf{S}	0.00	
Calcium	mg/L	1	5	60	61	\mathbf{S}	1.65	
Potassium	mg/L	1	5	10	10		0.00	
Manganese	mg/L	0.001	0.005	0.067	0.068	\bigcirc	1.48	
Dissolved Iron	mg/L	0.05	0.25	1.31	1.33	\bigcirc	1.52	
Fluoride	mg/L	0.1	0.5	0.20	0.20	\bigcirc	0.00	
Ammonia as N	mg/L	0.01	0.05	1.05	1.06	\bigcirc	0.95	
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	\bigcirc	0.00	
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	\bigcirc	0.00	
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01		0.00	
Total Organic Carbon	mg/L	1	5	14	14	\bigcirc	0.00	
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	267	268		0.37	
Total Alkalinity as CaCO3	mg/L	1	5	267	268		0.37	
Sulfate as SO4 - Turbidimetric	mg/L	1	5	< 10	< 10		0.00	
рН	pН	0.01	0.05	6.80	6.80		0.00	
Electrical Conductivity (Non Compensated)	μS/cm	1	5	511	511		0.00	
Temperature	°C	0.1	0.5	20.7	20.7		0.00	
Standing Water Level	mbgl	-		2.26	2.26		0.00	

TABLE 14-14: Duplicate Surface Water Results and QC Data

						-			
Lab Report No.				EW2302415001	EW2302415006				
Sample No.				SWP1	SWDuplicate				
Sample type				Surfacewater	OffSiteSWQC		חחח		
EPA No,				1	QC2		RPD		
Date Sampled			2/06/2023	2/06/2023					
Analyte	Units	PQL	5 x PQL	Result	Result				
Chloride	mg/L	1	5	173	6,790	8	190.06		
Calcium	mg/L	1	5	73	172	8	80.82		
Potassium	mg/L	1	5	17	140	×	156.69		
Manganese	mg/L	0.001	0.005	0.116	0.077	\otimes	40.41		
Total Iron	mg/L	0.05	0.25	0.16	0.93	8	141.28		
Dissolved Iron	mg/L	0.05	0.25	< 0.05	< 0.05	\bigcirc	0.00		
Fluoride	mg/L	0.1	0.5	0.3	0.6	\otimes	66.67		
Ammonia as N	mg/L	0.01	0.05	0.96	0.32	\otimes	100.00		
Nitrite as N	mg/L	0.01	0.05	0.04	0.03	\bigcirc	28.57		
Nitrate as N	mg/L	0.01	0.05	< 0.01	0.11	\otimes	166.67		
Nitrite + Nitrate as N	mg/L	0.01	0.05	0.03	0.14	\otimes	129.41		
Total Organic Carbon	mg/L	1	5	25	8	×	103.03		
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	431	141	8	101.40		
Total Alkalinity as CaCO3	mg/L	1	5	431	141	\bigotimes	101.40		
Sulfate as SO4 - Turbidimetric	mg/L	1	5	39	915	\bigotimes	183.65		
Dissolved Oxygen	mg/L	0.01	0.05	5.90	6.32	\bigcirc	6.87		
рН	рН	0.01	0.05	7.70	7.20	\bigcirc	6.71		
Electrical Conductivity (Non Compensated)	µS/cm	1	5	1,080	17,400	8	176.62		
Temperature	°C	0.1	0.5	13.4	15.0		11.27		

TABLE 14-15: Duplicate Groundwater Sample Results and QC Data

Lab Report No.				EW2303854010	EW2303854013			
Sample No.				BH18	GWDuplicate			
Sample type				Groundwater	GWQC		חחם	
EPA No,				25	QC1		RFD	
Date Sampled				1/09/2023	1/09/2023			
Analyte	Units	PQL	5 x PQL	Result	Result			
Chloride	mg/L	1	5	13	13	\bigcirc	0.00	
Calcium	mg/L	1	5	70	71	\bigcirc	1.42	
Potassium	mg/L	1	5	9	9		0.00	
Manganese	mg/L	0.001	0.005	0.241	0.242	\mathbf{S}	0.41	
Dissolved Iron	mg/L	0.05	0.25	2.43	2.46		1.23	
Fluoride	mg/L	0.1	0.5	0.20	0.20		0.00	
Ammonia as N	mg/L	0.01	0.05	1.44	1.31	\bigcirc	9.45	
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	\bigcirc	0.00	
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01		0.00	
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01		0.00	
Total Organic Carbon	mg/L	1	5	14	15		6.90	
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	283	279		1.42	
Total Alkalinity as CaCO3	mg/L	1	5	283	279		1.42	
Sulfate as SO4 - Turbidimetric	mg/L	1	5	4	4		0.00	
рН	pН	0.01	0.05	6.60	6.60	\bigcirc	0.00	
Electrical Conductivity (Non Compensated)	μS/cm	1	5	470	470		0.00	
Temperature	°C	0.1	0.5	18.6	18.6		0.00	
Standing Water Level	mbgl	-		2.28	2.38		4.29	

TABLE 14-16: Duplicate Surface Water Results and QC Data

Lab Report No.				EW2303862001	EW2303862006		
Sample No.				SWP1	SWDuplicate		
Sample type				Surfacewater	OffSiteSWQC		חחם
EPA No,				1	QC2		RFD
Date Sampled			1/09/2023	1/09/2023			
Analyte	Units	PQL	5 x PQL	Result	Result		
Chloride	mg/L	1	5	145	10,100	\otimes	194.34
Calcium	mg/L	1	5	58	282	8	131.76
Potassium	mg/L	1	5	18	218	\otimes	169.49
Manganese	mg/L	0.001	0.005	0.263	0.042	\otimes	144.92
Total Iron	mg/L	0.05	0.25	0.17	0.43	\otimes	86.67
Dissolved Iron	mg/L	0.05	0.25	0.06	< 0.10	\otimes	50.00
Fluoride	mg/L	0.1	0.5	0.3	0.7	\otimes	80.00
Ammonia as N	mg/L	0.01	0.05	0.09	0.76	8	157.65
Nitrite as N	mg/L	0.01	0.05	< 0.01	0.02	8	66.67
Nitrate as N	mg/L	0.01	0.05	< 0.01	0.06	8	142.86
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	0.08	\bigotimes	155.56
Total Organic Carbon	mg/L	1	5	20	7	8	96.30
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	316	163	8	63.88
Total Alkalinity as CaCO3	mg/L	1	5	316	163	8	63.88
Sulfate as SO4 - Turbidimetric	mg/L	1	5	23	1,610	8	194.37
Dissolved Oxygen	mg/L	0.01	0.05	4.16	4.91	\bigcirc	16.54
рН	pН	0.01	0.05	7.70	7.30		5.33
Electrical Conductivity (Non Compensated)	µS/cm	1	5	788	26,800	8	188.57
Temperature	°C	0.1	0.5	14.6	15.6		6.62

CHARTS

ENRS0033_SCC Dunmore Landfill_AEMR 2022-2023

Charts 47-61 Leachate Water Quality Charts

APPENDICES

ENRS0033_SCC Dunmore Landfill_AEMR 2022-2023

Appendix A: EPL 5984 Sampling Point Summary (NSW EPA, 10/02/2022)

2	Leachate monitoring	Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring	BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring	BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring	BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring	BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring	BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring	BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring	BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring	BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).

18	Groundwater monitoring	BH9 - as shown on the drawing
		titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA
		Ref. no. DOC19/1027702).
19	Surface Water Monitoring	SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
20	Surface Water Monitoring	SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
21	Surface Water Monitoring	SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
22	Surface Water Monitoring	SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
23	Groundwater Monitoring	BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
24	Groundwater monitoring	BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
25	Groundwater monitoring	BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).

Appendix B:

Laboratory Chain of Custody (COC) & Certificates of Analysis

(COA) – Water Samples – Quarter 1

CHAIN OF CUSTODY Sydney 277 Woodcark Rd, Smithfield NSW 2176
 Ph: 02 8784 8555 E samples.sydney@alserviro.com C Brisbane: 32 Shand St. Stafford QLD 4053 CI Melbourne, 2-4 Westal Rd, Springvald VIC 3171 Ph:07-3243-7222 Eisamples.brsbane@alsenvib.com Ph 03 5549 6600 E: camples, resbourne@alsenvirc.com Ph. de 1776 door, E. sampled syntregigationement owner D. Newcastler S. Rosequer, R., Waranove, NSW 200 Ph.02, 4968 0438 Elsemples newcastle@attemice.com Ph.02, 4968 0438 Elsemples newcastle@attemice.com ALS Laboratory: please tick -> ALS Adelaide: 2-1 Burna Rd, Pooraka SA 6095
 Physics and Control Rd, Pooraka SA 6095
 Physics and Control Rd, Pooraka SA 6095

Cl. Parth: 10 Hod Way, Malaga WA 6090 Ph. 08 9209 7665 €∵saniples.perth@aisenviro.com C Launceston: 27 Wellington St, Launceston TAS 7250

CLIENT:	Shellharbour City Council		TURNAR						ବୟୁକାରମୋହା ପ. ୯୨	n:	Ph. 03 633	11 2158 Er laun	nceston@aisenv	iro.com
OFFICE:	41 Burelli St WOLLONGONG NSW	IG NSW 2500 (Standard TAT may be longer for some tests								ONLY (Circle)				
PROJECT:	Dunmore Quarterly Ground Water	rs EPL	ALS QUO	DTE NO.: WO/030	0/19 TENDER	urgent IAI	List due dat	e):			Cuk	stody Seal ich	tect?	
ORDER NUMBER:										BER (Circle	e) reca	eipt?	r cer pricke presi	ant upon Na
PROJECT MANAGER:	Ryan Stirling						OF		: 34 ; 34	56	7 Rar	idom Sample	• Temperature c	n Receipt 5 + 3 inc
SAMPLER:	bert. Da	Li'O SAMPLERI	OBILE:		RELINQUISHED BY:	. <u> </u>	RE	CEIVED BY						
Email Penorte to	(YES / NO)	EDD FORM	AT (or defa	ult):	Robert	Del	Lio	Ano	fe "	1				Environmental Division
Email Invoice to :		· · · · · · · · · · · · · · · · · · ·		I	DATE/TIME:		DAT	E/TIME:			DATE/TIN	ΛE:	1	Wollongong
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to:			5/12/22	<u> </u>	3:30.	5/1	2/2	2				EW2205534
ALS USE ONLY	SAMPLI MATRIX: So	E DETAILS lid(S) Water(W)		CONTAINER INFO	RMATION	ANAL	YSIS REQUI	RED includ	ing SUITES	(NB. Suite Co	des must be i	isted to attrac	ct suite pri	
	a					Wh	ere Metals are re	Is are required, specify Total (unfiltered bottle required) or Dissolve				d filtered bottle r	required).	
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIV (refer to codes below)	/E TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K,	Toc	Dissolved Fe & Mn	VT-4 (NO2, VO3)	dend to curafins			Telephone : 02 42253125
	BH1C 5.	12.22 9:30	, w			1	1	1						Field Tests - pH, EC, Temp & SWL
	вна	12:55	w			1	1	1	1	1	1		<u>†</u>	Field Tests - pH, EC, Temp & SWL
	BH4	13:45	w			1	1	1	1	1	1		+	Field Tests - pH, EC, Temp & SWL
		8:35	w			√	1	1	1	1				Field Tests - pH, EC, Temp & SWL
	BH12R	11:50	w			✓	1	1	1	1				Field Tests - pH, EC, Temp & SWL
	BH13	12:10	w			1	1	1	1	1				Field Tests - pH, EC, Temp & SWL
	BH14	12:30				¥	~	4	1	1				Field Tests - pH, EC, Temp & SWL
	BH100	11:15				_	1	1	1	1				Field Tests - pH, EC, Temp & SWL
	BU19	13.20				-	1	×	1	1		i		Field Tests - pH, EC, Temp & SWL
	BH21	10:50					1	√	1	1				Field Tests - pH, EC, Temp & SWL
	BH22	10:20	• W			1	×	√	×	1				Field Tests - pH, EC, Temp & SWL
	Duplicate	9:55					×	~	~	1				Field Tests - pH, EC, Temp & SWL
j.	Triplicate	1 2:35	WW			√								Field Tests - pH, EC, Temp & SWL
		V 0.79												
						<u> </u>								
	é													
Lat. St	ANTER ST				TOTAL 10									

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic; ORC = Nitric Preserved Plastic; ORC = Nitric Preserved; AP - Airfreight Unpreserved; AP - Airfreight Unpreserve V a VOA Vial HCI Preserved Flastic, N = Plante Flaste, OKC = Natice Flaste, OKC = Natice Flaster, OKC = Natice

CERTIFICATE OF ANALYSIS

Work Order	EW2205534	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 05-Dec-2022 16:46
Order number	: 1045179	Date Analysis Commenced	: 05-Dec-2022
C-O-C number	:	Issue Date	: 20-Dec-2022 13:48
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS		Accorditation No. 925
No. of samples received	: 14		Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Administration - Wollongong, NSW
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate on sample 4 & 13 due to sample matrix.
- ED041G: LOR raised for Sulfate on sample 1 due to sample matrix.
- EK057G: It has been noted that Nitrite is greater than NOX. (Confirmed by re-analysis)
- It has been noted that Nitrite is greater than NOx for sample 9, however this difference is within the limits of experimental variation.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling via Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ing date / time	05-Dec-2022 09:30	05-Dec-2022 12:55	05-Dec-2022 13:45	05-Dec-2022 08:35	05-Dec-2022 11:50
Compound	CAS Number	LOR	Unit	EW2205534-001	EW2205534-002	EW2205534-003	EW2205534-004	EW2205534-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	8.1	8.2	7.3	7.3
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	µS/cm	7160	1160	692	3580	1340
Compensated)								
EA116: Temperature								
Temperature		0.5	°C	25.2	17.6	17.6	18.7	19.4
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2780	330	297	1820	568
Total Alkalinity as CaCO3		1	mg/L	2780	330	297	1820	568
ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	158	61	<10	119
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	904	140	50	392	107
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	133	126	86	180	154
Potassium	7440-09-7	1	mg/L	219	44	16	69	28
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.106	0.022	0.094	0.679	0.508
Iron	7439-89-6	0.05	mg/L	8.16	<0.05	1.70	0.32	6.52
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.5	0.2	0.1	0.4	0.2
EK055G: Ammonia as N by Discrete Anal	yser							
Ammonia as N	7664-41-7	0.01	mg/L	345	8.51	1.62	124	3.74
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.27	0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	er							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	2.39	0.01	<0.01	0.01
EK059G: Nitrite plus Nitrate as N (NOx)	ov Discrete Ana	lvser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	2.66	0.02	<0.01	0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	203	17	14	79	21

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	05-Dec-2022 09:30	05-Dec-2022 12:55	05-Dec-2022 13:45	05-Dec-2022 08:35	05-Dec-2022 11:50
Compound	CAS Number	Number LOR Unit		EW2205534-001	EW2205534-002	EW2205534-003	EW2205534-004	EW2205534-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	3.00	3.01	4.24	2.94	4.15

Composite Concent	Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
Company Constraints Constraints Constraints 			Sampli	ing date / time	05-Dec-2022 12:10	05-Dec-2022 12:30	05-Dec-2022 11:15	05-Dec-2022 13:20	05-Dec-2022 10:50
RADSPD: Flaid ConductivityResult	Compound	CAS Number	LOR	Unit	EW2205534-006	EW2205534-007	EW2205534-008	EW2205534-009	EW2205534-010
PL PL<					Result	Result	Result	Result	Result
pH 0.1 pH uh 7.3 7.0 7.4 8.4 7.2 EAJ9ED: Felo Conductivity (Non 1 µSton 1770 756 2650 724 880 EAH16: Temperature	EA005FD: Field pH								
EAADBCP: Field Conductivity (Ixon 1 I jiSom 1770 756 2650 724 880 Compensated) 1770 756 2650 724 880 EAHTS: Tomperature 0.5 °C 20.3 19.7 18.2 17.6 18.3 ED037F: Alkalinity as CACO3 DMO:210.001 1 mgl. <1	рН		0.1	pH Unit	7.3	7.0	7.4	8.4	7.2
Electrical Conductivity (Non 1 μ S/cm 1770 786 280 724 880 EA 145: Temperature	EA010FD: Field Conductivity								
EA115 ramperature	Electrical Conductivity (Non Compensated)		1	μS/cm	1770	756	2650	724	880
Temperature ··· 0.5 °C 20.3 19.7 18.2 17.6 18.3 ED037P: Alkalinity by C Titrator ···· ···· ···· ···· Hydroxide Akalinity as CaCO3 3812 32.6 1 mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1< <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <th< td=""><td>EA116: Temperature</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	EA116: Temperature								
ED037P: Alkalinity by PC Tritetor Mydroxife Akalinity by PC Tritetor Mydroxife Akalinity as CaC03 DMO-210-001 1 mg/L <1 <1 <1 <1 <1 Garbonate Akalinity as CaC03 SB12-226 1 mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Temperature		0.5	°C	20.3	19.7	18.2	17.6	18.3
Hydroxide Alkalinity as CaCO3 DMO(21001) 1 mg/L <f1< th=""> <f1< th=""> <f1< th=""> <f1< th=""> <f1< th=""> Carbonate Alkalinity as CaCO3 3812.32.6 1 mg/L 779 334 4677 287 <f1< td=""> Total Alkalinity as CaCO3 7.162.3 1 mg/L 779 334 4677 287 <f1< td=""> <f1< td=""></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<></f1<>	ED037P: Alkalinity by PC Titrator								
Carbonate Alkalinity as CaCO3 381 2.26 1 mg/L <1 <1 <1 <1 <1 Blearbonate Alkalinity as CaCO3 71.8 2.3 1 mg/L 779 334 467 287 458 Total Alkalinity as CaCO3 1 mg/L 779 334 467 287 458 EDM43C: Churbidimetric) as SO42- by DA	Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3 71-9.2.3 1 mg/L 779 334 467 287 458 Total Alkalinity as CaCO3 1 mg/L 779 334 467 287 458 Total Alkalinity as CaCO3 1 mg/L 779 334 467 287 458 Boular Sculate (Turbulimetric as SO4 - 2 by DA 458 Boular Sculate (Turbulimetric 14808-79-8 1 mg/L 64 80 534 53 12 ED045C: Choride by Discrete Analyser Choride by Discrete Analyser .	Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Total Akalinity as CaC03 1 mg/L 779 334 467 287 448 ED041G: Sulfate (Turbidimetric) as S04 2· by DA mg/L 640 680 534 53 12 ED045G: Chloride by Discrete Analyser mg/L 640 33 447 53 12 ED045G: Chloride by Discrete Analyser mg/L 204 33 447 53 76 ED095F: Discolved Major Catlons mg/L 740,070-2 1 mg/L 185 82 131 75 87 Edclum 740,070-2 1 mg/L 185 82 131 75 87 Edclum 740,070-2 1 mg/L 0.320 0.082 0.311 0.068 0.078 Ed020F: Discolved Metals by ICP-MS mg/L 0.320 0.082 0.311 0.068 0.02 0.2 0.2 EK040P: Fluoride by DC Titator mg/L 0.32 0.66 0.2 0.2 0.2	Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	779	334	467	287	458
ED0416: Sulfate (Turbidimetric) as SO4 2- by DA Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L 64 80 534 53 12 ED0456: Chloride by Discrete Analyser C C C C C C Chloride and Callone 1 mg/L 204 33 447 52 76 ED0957: Dissolved Major Cations	Total Alkalinity as CaCO3		1	mg/L	779	334	467	287	458
Sulfate as SQ4 - Turbidimetric 14808-79-8 1 mg/L 64 80 534 63 12 ED045G: Chloride by Discrete Analyser -<	ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
BO0450: Chloride by Discrete Analyser Chloride by Discrete Analyser Chloride by Discrete Analyser BO0436: Chloride by CP-MS BO0436: Chloride by ICP-MS	Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	64	80	534	53	12
Chloride 16887-00-6 1 mg/L 204 33 447 52 76 ED037: Dissolved Major Cations	ED045G: Chloride by Discrete Analyser								
Vertications Calcium 7440-70-2 1 mg/L 185 82 131 75 87 Potassium 7440-00-7 1 mg/L 17 14 185 37 87 Potassium 7440-00-7 1 mg/L 17 14 185 37 87 CG020F: Dissolved Metals by ICP-MS Colspan="2">Colspan="2" EKO40P: Fluoride by PC Titrator Fluoride 16984-48-8 O.01 mg/L 0.2 0.6 0.2 0.2 0.2 0.2 EKO5SC: Animonia as N by Discrete Analyser U Mg/L 0.03 0.01 0.01 <h></h> Col1 <h></h> Co	Chloride	16887-00-6	1	mg/L	204	33	447	52	76
Calcium 7440-70-2 1 mg/L 185 82 131 75 87 Potassium 7440-09-7 1 mg/L 17 14 185 37 18 EG020F: Dissolved Metals by ICP-MS U U 185 0.01 180 Manganese 7439-09-5 0.001 mg/L 0.320 0.082 0.311 0.068 0.078 Iron 7439-09-6 0.05 mg/L 0.320 0.082 0.311 0.068 0.078 EK040P: Fluoride by PC Titrator U U 0.32 0.07 0.02 0.97 1.85 Fluoride as N by Discrete Analyser U mg/L 3.32 0.66 0.2 0.2 0.2 0.2 Kotise as N by Discrete Analyser U 3.32 0.93 0.01 0.01 0.01 0.01 0.01 Kotise as N by Discrete Analyser U Margina M 0.91 0.19 0.19 0.01 0.01 0.01 Kotises: Nitrate	ED093F: Dissolved Major Cations								
Potassium 7440-09-7 1 mg/L 17 14 185 37 18 EG020F: Dissolved Metals by ICP-MS 18 Manganese 7439-86-5 0.01 mg/L 0.320 0.082 0.311 0.068 0.078 Iron 7439-86-5 0.01 mg/L 0.320 0.082 0.311 0.068 0.078 Iron 7439-86-5 0.01 mg/L 0.320 0.062 0.311 0.068 0.078 Etodator Use Use Use Use 0.02 0.078 0.078 0.078 Fluoride by PC Titrator Use Use 0.07 0.078 0.078 0.07 0.02 0.2<	Calcium	7440-70-2	1	mg/L	185	82	131	75	87
EG020F: Dissolved Metals by ICP-MS Manganese 7439-96-5 0.001 mg/L 0.320 0.082 0.311 0.068 0.078 Iron 7439-89-6 0.05 mg/L 1.82 0.07 10.2 0.97 1.85 EK040P: Fluoride by PC Titrator u u 0.2 0.3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	Potassium	7440-09-7	1	mg/L	17	14	185	37	18
Manganese 7439-96-5 0.001 mg/L 0.320 0.082 0.311 0.068 0.078 Iron 7439-89-6 0.05 mg/L 1.82 0.07 10.2 0.97 1.85 EK040P: Fluoride by PC Titrator 0.02 0.97 1.85 EK040P: Fluoride by PC Titrator 0.02 0.66 0.2 0.2 0.2 Fluoride 1998-44-8 0.1 mg/L 0.2 0.66 0.2 0.2 0.2 EK055G: Ammonia as N by Discrete Analyser 0.131 0.2 0.2 0.2 K055G: Ammonia as N by Discrete Analyser <	EG020F: Dissolved Metals by ICP-MS								
Iron7439-89-60.05mg/L1.820.0710.20.971.85EK040P: Fluoride by PC TitratorFluoride16984-48-80.1mg/L0.20.60.20.20.2Fluoride in the second	Manganese	7439-96-5	0.001	mg/L	0.320	0.082	0.311	0.068	0.078
EK040P: Fluoride by PC TitratorFluoride16984-48-80.1mg/L0.20.20.2EK055G: Ammonia as N by Discrete AnalyserAmmonia as N7664-41.70.01mg/L3.320.9310.32.351.51EK057G: Nitrite as N by Discrete AnalyserNitrite as N14797-65-00.01mg/L0.030.01<0.01	Iron	7439-89-6	0.05	mg/L	1.82	0.07	10.2	0.97	1.85
Fluoride16984-48-80.1mg/L0.20.60.20.20.2EK055G: Anmonia as N by Discrete AnalyserAmmonia as N7664-41-70.01mg/L3.320.9310.32.351.51EK057G: Nitrite as N by Discrete AnalyserNitrite as N14797-65-00.01mg/L0.030.01<0.01	EK040P: Fluoride by PC Titrator								
EK055G: Anmonia as N by Discrete AnalyserAmmonia as N7664-41-70.01mg/L3.320.9310.32.351.51EK057G: Nitrite as N by Discrete AnalyserNitrite as N14797-65-00.01mg/L0.030.01<0.01	Fluoride	16984-48-8	0.1	mg/L	0.2	0.6	0.2	0.2	0.2
Ammonia as N 7664-41-7 0.01 mg/L 3.32 0.93 10.3 2.35 1.51 EK057G: Nitrite as N by Discrete Analyser 14797-65-0 0.01 mg/L 0.03 0.01 <0.01 0.01 <0.01 EK058G: Nitrate as N by Discrete Analyser 0.01 mg/L 0.03 0.01 <0.01 0.01 <0.01 <0.01 EK058G: Nitrate as N by Discrete Analyser 0.01 mg/L 0.19 1.57 0.14 <0.01 <0.01 <0.01 EK059G: Nitrite plus Nitrate as N (NOX) by Discrete Analyser 0.01 mg/L 0.22 1.58 0.14 <0.01 <0.01 <0.01 EK059G: Nitrite plus Nitrate as N (NOX) by Discrete Analyser 0.01 mg/L 0.23 1.58 0.14 <0.01 <0.01 <0.01 EV051: Total Organic Carbon (TOC) Total Organic Carbon (EK055G: Ammonia as N by Discrete Analy	yser							
EK057C: Nitrite as N by Discrete AnalyserNitrite as N14797-65-00.01mg/L0.030.01<0.01	Ammonia as N	7664-41-7	0.01	mg/L	3.32	0.93	10.3	2.35	1.51
Nitrite as N14797-65-00.01mg/L0.030.01<0.01<0.01<0.01EK058G: Nitrate as N by Discrete AnalyserNitrate as N14797-55-80.01mg/L0.191.570.14<0.01<0.01EK059G: Nitrite plus Nitrate as N (NOX) by Discrete AnalyserNitrite + Nitrate as N0.01mg/L0.221.580.14<0.01<0.01<0.01EP005: Total Organic Carbon (TOC)Total Organic Carbon1mg/L2318371922	EK057G: Nitrite as N by Discrete Analyse	er							
EK058G: Nitrate as N by Discrete AnalyserNitrate as N14797-55-80.01mg/L0.191.570.14<0.01	Nitrite as N	14797-65-0	0.01	mg/L	0.03	0.01	<0.01	0.01	<0.01
Nitrate as N 14797-55-8 0.01 mg/L 0.19 1.57 0.14 <0.01 <0.01 EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser service	EK058G: Nitrate as N by Discrete Analyse	er							
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser Nitrite + Nitrate as N 0.01 mg/L 0.22 1.58 0.14 <0.01 <0.01 EP005: Total Organic Carbon (TOC) Total Organic Carbon 1 mg/L 23 18 37 19 22	Nitrate as N	14797-55-8	0.01	mg/L	0.19	1.57	0.14	<0.01	<0.01
Nitrite + Nitrate as N 0.01 mg/L 0.22 1.58 0.14 <0.01 <0.01 EP005: Total Organic Carbon (TOC) Total Organic Carbon 1 mg/L 23 18 37 19 22	EK059G: Nitrite plus Nitrate as N (NOx) t	by Discrete Ana	lyser						
EP005: Total Organic Carbon (TOC) Total Organic Carbon 1 mg/L 23 18 37 19 22	Nitrite + Nitrate as N		0.01	mg/L	0.22	1.58	0.14	<0.01	<0.01
Total Organic Carbon 1 mg/L 23 18 37 19 22	EP005: Total Organic Carbon (TOC)								
	Total Organic Carbon		1	mg/L	23	18	37	19	22

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	05-Dec-2022 12:10	05-Dec-2022 12:30	05-Dec-2022 11:15	05-Dec-2022 13:20	05-Dec-2022 10:50
Compound	CAS Number	S Number LOR Unit		EW2205534-006	EW2205534-007	EW2205534-008	EW2205534-009	EW2205534-010
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	4.11	4.53	0.73	4.53	1.97

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	05-Dec-2022 10:20	05-Dec-2022 09:55	05-Dec-2022 08:35	
Compound	CAS Number	LOR	Unit	EW2205534-011	EW2205534-012	EW2205534-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	7.3	8.1	7.3	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	2560	1910	3580	
EA116: Temperature							
Temperature		0.5	°C	20.9	17.3	18.7	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	834	606	1820	
Total Alkalinity as CaCO3		1	mg/L	834	606	1820	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	149	283	<10	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	429	235	390	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	131	94	177	
Potassium	7440-09-7	1	mg/L	18	43	68	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.562	0.021	0.670	
Iron	7439-89-6	0.05	mg/L	0.13	0.12	0.31	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	0.4	0.3	
EK055G: Ammonia as N by Discrete Ana	lyser						
Ammonia as N	7664-41-7	0.01	mg/L	4.92	55.8	119	
EK057G: Nitrite as N by Discrete Analys	er						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Analys	ser						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	41	34	80	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	05-Dec-2022 10:20	05-Dec-2022 09:55	05-Dec-2022 08:35	
Compound	CAS Number	LOR Unit		EW2205534-011	EW2205534-012	EW2205534-013	
				Result	Result	Result	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	2.98	2.77	3.94	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

CHAIN OF CUSTODY Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Ph: 02 8784 8555 Etsamples.sydney@alsenviro.com

ALS Laboratory: please tick ->

C Brisbane: 32 Shand St. Slafford QLD 4053 Ph:07 3243 7222 Esamples brisbane@alsenviro.com El Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 El Townsville: 14-15 Desma Ct, Bohle QLD 4818 Ph:02 4968 9433 E:samples.newcaslle@alseriviro.com Ph:07 4796 0600 E: :ownsville.environmental@alsenviro.com

C Melbourne: 2-4 Westall Rd. Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenvizy.com El Adelaide: 2-1 Burna Rd, Popraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

E Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com El Launceston: 27 Wellington St. Launceston TAS 7250 Phr 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	Shellharbour City Council		TURNAROUND REQUIREMENTS : Standard TAT (List due date):									FOF	LABORATOR	YUSE ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard T/ e.g., Ultra Tr	AT may be longer for some tests ace Organics)	Non S	tandard or urg	ent TAT (Lis	t due dat	e):		<u>-</u>	Cust	ody Seal Intact?	No No
PROJECT:	Dunmore Quarterly Surface Waters	s EPL	ALS QUO	TE NO.: WO/030/19 TENDE	ER				COC SEQ	JENCE NUME	BER (Circle) Free	ike/frozen loe brid pl?	cka present upon ves) No N/
ORDER NUMBER:	A							CO0	C: 1 2	34	56	7 Rom	iom Sampic Temp	élature on Réceipt
PROJECT MANAGER:	Ryan Stirling	<u> </u>						OF	1 2	34	56	7 One	r comment	D.C.
SAMPLER:	bert Dalib	SAMPLER N	NOBILE:			SHED BY:	.	RE	CEIVED BY:	~ !		RELINQU	ISHED BY:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defau	ilt):	1.60	e-+ 1	Jar 10	>	Anet	-e _j				
Email Reports to :		w =			DATE/TIME	≞ >lia		DA	fe/TIME: クレッル	07.		DATE/TIM	IE:	DATE/TIME:
Email Invoice to :	· · · · · · · · · · · · · · · · · · ·				211.	-1			414	11				
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL: CC reports to	:											
ALS USE ONLY	SAMPLI MATRIX: So	E DETAILS blid(S) Water(W)		CONTAINER INFO	ORMATION		ANALYSI Where M	S REQU	IRED includi	ing SUITES	(NB. Suite Co ottle required) o	odes must be l r Dissolved (fie	isted to attract suite Id filtered bottle require	e price) Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below	IVE v)	TOTAL BOTTLES	TSS	NT-1, NT-2A (Ionic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NO3	TSS, TDS, TOC, Total Mn	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SWP1 2	12.22 11:35	₹ w				·		· ·	-				Field Tests - pH, EC, DO & Temp
	SWC_2	G '55	; w					✓		1	. 🖌	1	~	Field Tests - pH, EC, DO & Temp
	SWC_UP	8.5	, w					1		1	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_DOWN	9:00	, w					✓		1	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_DOWN_2	9:15	s w	· · · ·				1		1	1	1	1	Field Tests - pH, EC, DO & Temp
	Duplicate	9:55	w					1		1	1	1	· ·	Field Tests - pH, EC, DO & Temp
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preserve	ed Plastic; ORC = Nitric Preserve	d ORC: SH =	Sodum Hydroxide/Cd Preserved; S	TOTAL S = Sodium H	10 ydroxide Prese	ved Plastic; A	G = Ambei	r Glass Unpres	erved; AP - Al		eserved Plastic	Envi Woll W	ironmental Division longong ork Order Reference W2205529

Telephone : 02 42253125

CERTIFICATE OF ANALYSIS

Work Order	EW2205529	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 02-Dec-2022 14:55
Order number	: 147649	Date Analysis Commenced	: 02-Dec-2022
C-O-C number	:	Issue Date	: 09-Dec-2022 17:53
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		Accorditation No. 925
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- TDS by method EA-015 may bias high for sample 5 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)	Sample ID		SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22	
		Sampli	ng date / time	02-Dec-2022 11:35	02-Dec-2022 09:55	02-Dec-2022 08:50	02-Dec-2022 09:00	02-Dec-2022 09:15
Compound	CAS Number	LOR	Unit	EW2205529-001	EW2205529-002	EW2205529-003	EW2205529-004	EW2205529-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.5	7.0	7.0	7.0	7.0
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	1500	14100	17100	21600	29100
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		9700	12000	15400	23300
EA025: Total Suspended Solids dried at	104 ± 2°C							
Suspended Solids (SS)		5	mg/L	14	10	<5	<5	<5
EA045: Turbidity								
Turbidity		0.1	NTU	2.7	19.7	14.0	10.7	6.3
EA116: Temperature								
Temperature		0.5	°C	19.5	18.7	19.0	19.0	18.7
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	464	141	150	154	142
Total Alkalinity as CaCO3		1	mg/L	464	141	150	154	142
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	96	680	817	1060	1500
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	225	5380	6620	8410	11200
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	65	124	145	184	242
Magnesium	7439-95-4	1	mg/L	41	308	378	493	678
Sodium	7440-23-5	1	mg/L	213	2680	3280	4310	5920
Potassium	7440-09-7	1	mg/L	20	101	122	160	216
EG020F: Dissolved Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.06	<0.05	<0.05	<0.05	<0.05
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.842	0.165	0.169	0.130	0.114
Iron	7439-89-6	0.05	mg/L	0.14	1.20	0.89	0.68	0.48
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.6	0.6	0.7	0.8

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	02-Dec-2022 11:35	02-Dec-2022 09:55	02-Dec-2022 08:50	02-Dec-2022 09:00	02-Dec-2022 09:15
Compound	CAS Number	LOR	Unit	EW2205529-001	EW2205529-002	EW2205529-003	EW2205529-004	EW2205529-005
				Result	Result	Result	Result	Result
EK055G: Ammonia as N by Discrete Anal	yser							
Ammonia as N	7664-41-7	0.01	mg/L	8.52	0.53	0.32	0.58	0.32
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	0.01	mg/L	8.42	0.53	0.32	0.58	0.32
EK057G: Nitrite as N by Discrete Analyse	ər							
Nitrite as N	14797-65-0	0.01	mg/L	0.04	0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	er							
Nitrate as N	14797-55-8	0.01	mg/L	0.02	0.11	0.10	0.07	0.04
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Anal	yser						
Nitrite + Nitrate as N		0.01	mg/L	0.06	0.12	0.10	0.07	0.04
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	17.6	169	207	262	350
Ø Total Cations		0.01	meq/L	16.4	151	184	241	331
ø Ionic Balance		0.01	%	3.59	5.65	5.78	4.18	2.80
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	30	9	8	9	7
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	3.43	5.80	4.94	7.07	4.49

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	02-Dec-2022 09:55	 	
Compound	CAS Number	LOR	Unit	EW2205529-006	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.0	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	14100	 	
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	9660	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	10	 	
EA045: Turbidity						
Turbidity		0.1	NTU	19.0	 	
EA116: Temperature						
Temperature		0.5	°C	18.7	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	132	 	
Total Alkalinity as CaCO3		1	mg/L	132	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	704	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	5390	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	127	 	
Magnesium	7439-95-4	1	mg/L	318	 	
Sodium	7440-23-5	1	mg/L	2750	 	
Potassium	7440-09-7	1	mg/L	106	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.161	 	
Iron	7439-89-6	0.05	mg/L	1.11	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.6	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Samplii	ng date / time	02-Dec-2022 09:55	 	
Compound	CAS Number	LOR	Unit	EW2205529-006	 	
				Result	 	
EK055G: Ammonia as N by Discrete Anal	yser					
Ammonia as N	7664-41-7	0.01	mg/L	0.60	 	
EK055G-NH4: Ammonium as N by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.60	 	
EK057G: Nitrite as N by Discrete Analyse	ər					
Nitrite as N	14797-65-0	0.01	mg/L	0.01	 	
EK058G: Nitrate as N by Discrete Analys	er					
Nitrate as N	14797-55-8	0.01	mg/L	0.11	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.12	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	169	 	
Ø Total Cations		0.01	meq/L	155	 	
Ø Ionic Balance		0.01	%	4.47	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	9	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	5.81	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

CHAIN OF CUSTODY ALS Laboratory: please tick →

 Sydney: 277 Woodpark RJ, Smithfeld NSW 2178
 Brisbane: 32 Shand St, Stafford QLD 4053
 Ph.07 8784 8555 Eisamples.sydney@alsenviro.com
 Ph.07 3243 7222 Eisamples.brisbane@alsenviro.com In Neuros 1: 5 Rosseguer Re, Waralford NSW 333.
 Ph 02 4963 3433 Elsemples neurosatel@piserviro.com
 Ph.07 4796 0500 El Josando El J

C Melbourne, 2-4 Westell Rd. Springvale VIC 3174 Ph/03.8549.9600 £: samples.melbourne@alsenviro.com C Adefaide: 2-1 Burma Bd. Pooraka SA 5095 Ph 08 8359 0690 Eadelaide@aisenvirg.com

C: Paîth 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7665 E: sanisled, parth@alsonviro.com C Launceston: 27 Wellington St. Launceston TAS 7250 Ph. 03 6331 2158 El launcestori/@alsenviro.com

CLIENT:	Shellharbour City Council		TURNAR	OUND REQUIREMENTS :	Standard T	AT (List	due date):	:	-v. <u> </u>				FC	R LABORAT	ORY USE C	NLY (Circle)-
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard T/ e.g., Ultra Tr	AT may be longer for some tests ace Organics)	Non Standa	ard or ur	gent TAT (L	List due da	ate):				cu	e Andy Seal Inter	n II.	
PROJECT:	Dunmore Quarterly Leachate		ALS QUO	TE NO.: WO/03	30/19 TENDER				COC SE	QUENCE	E NUMBI	ER (Circle)	e los / linzen ic arto	e bilcke prese	milipon 📈 No NA
ORDER NUMBER:								c	oc: 1	2 3	4	56	7 Ra	xiom Sample T	emperature o	ri Receipt
PROJECT MANAGER:	Ryan Stirling		_			-			DF: 1	23	4	56	7 00	er comment		6.2
SAMPLER:	bert Dalin	SAMPLER M	OBILE:		RELINQUISHE	D BY:		R	ECEIVED B	Y:		<u> </u>	RELINQ	JISHED BY:		RECEIVED BY:
COC emailed to ALS?	YES / NO)	EDD FORMA	T (or defau	It):	Rebe-	4 5	Duli	P	An	Ja						
Email Reports to :					DATE/TIME:		• • •	D.	ATE/TIME:	-, ,			DATE/TH	 ME:		DATE/TIME:
Email Invoice to :					2/12/	26			2/1	212	-2					
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL: CC reports to:							,	,						
ALS USE ONLY.	SAMPLI MATRIX: Sc	E DETAILS plid(S) Water(W)			ORMATION		ANALY	SIS REQU	JIRED inclu	ding SU	IITES (N	B. Suite Co	des must be	listed to attract	suite price)	Additional Information
	······	T					When	re Metais are	required, specif	y Total (unf	filtered bot	ttie required} o	Dissolved (fie	eld filtered bottle re	quired).	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes belov	'IVE TC ♥) BO [™]	DTAL TTLES	umonia	NT-2A (Alka, 604, Cl, Fl)	OC		otal Fe & Mn	IT-4 (NO2, (03)				Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	Leachate Storage Tank - LP1	2/12/24 10:AT	5 W	· · · · · · · · · · · · · · · · · · ·				<u>-</u> ∽L			⊢ ✓	_ <u>zz</u> √				Field Tests - pH, EC, Temp & DO
		0-1 10-1- 10-4.						1								p.,,,
······	· · · · · · · · · · · · · · · · · · ·															
								1		-						
	·····									_						
<u> </u>																
	L					ĺ										
												· · · · ·				
······································									·				ļ			
												_	•		doloa	
		· · · · · · · · · · · · · · · · · · ·										En\	ronm		1510.1	
									_			- ¥VO - ∖	liongo Vork Öri	lig der Refere	ence	
												İ		2205	533	
												- 1				
······							•	<u> </u>		<u> </u>						
					·			·				_				
												_				
		<u> </u>										_				
												Tele	phone : 02	42253125		
f	 											_			1	
														+		· · · · · · · · · · · · · · · · · · ·
Water Container Or de					TOTAL	U										
reter Container Codes: P	 Onpreserved Plastic; N = Nitric Preserve VOA VERT Quality Plastic Theory 	ed Plastic; ORC = Nitric Preserved	ORC; SH =	Sodium Hydroxide/Cd Preserved;	S = Sodium Hydro:	xide Pres	erved Plasti	с; AG = Ап	ber Glass Un	preserved	i; AP - A	infreight Unp	reserved Pla	stic	·	

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulphate Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Pastic; H = HCI preserved Plastic; HS = HCI preserved Plastic; F = Formaldehyde Preserved Plastic; F = Formaldehyde Preserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	EW2205533	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone		Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 02-Dec-2022 14:48
Order number	: 147649	Date Analysis Commenced	: 02-Dec-2022
C-O-C number	:	Issue Date	: 09-Dec-2022 16:39
Sampler	: Robert DaLio		HALA NALA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		Accorditation No. 935
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK059G: LOR raised for NOx on sample 1 due to sample matrix.
- EK057G: LOR raised for Nitrite on sample 1 due to sample matrix.
- EK058G: LOR raised for Nitrate on sample 1 due to sample matrix.
- ED041G: LOR raised for Sulfate on sample 1 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage	 	
(i ank		
		Sampli	ng date / time	02-Dec-2022 10:45	 	
Compound	CAS Number	LOR	Unit	EW2205533-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.5	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non		1	µS/cm	9310	 	
Compensated)						
EA015: Total Dissolved Solids dried at 180	0 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5310	 	
EA116: Temperature						
Temperature		0.1	°C	19.9	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	1000	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2600	 	
Total Alkalinity as CaCO3		1	mg/L	3600	 	
ED041G: Sulfate (Turbidimetric) as SO4 2-	by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<100	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1710	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	39	 	
Potassium	7440-09-7	1	mg/L	363	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.101	 	
Iron	7439-89-6	0.05	mg/L	1.35	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discrete Analy	/ser					
Ammonia as N	7664-41-7	0.01	mg/L	773	 	
EK057G: Nitrite as N by Discrete Analyse	r					
Nitrite as N	14797-65-0	0.01	mg/L	<1.00	 	
EK058G: Nitrate as N by Discrete Analyse	ər					
Nitrate as N	14797-55-8	0.01	mg/L	<1.00	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	y Discrete Ana	lyser				

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	02-Dec-2022 10:45	 	
Compound	CAS Number	LOR	Unit	EW2205533-001	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx) to	by Discrete Ana	lyser - Co	ntinued			
Nitrite + Nitrate as N		0.01	mg/L	<1.00	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	506	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	5.58	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	63.2	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

Appendix C:

Laboratory Chain of Custody (COC) & Certificates of Analysis

(COA) – Water Samples – Quarter 2

CHAIN OF CUSTODY ALS Laboratory: please tick →

🗇 Sydney: 277 Woodpark Rd, Smithield NSW 2076 👘 Erlabane. 32 Shand St. Stafford QLD 4053 👘 Melbourne. 2-4 Westall Rd, Smithield NSW 2076 Ph.03 171 Ph.02 8784 9555 E.samples.sydnay@alsativ.co.com Ph.03 243 7222 Elsamples.triabena@alsativ.co.com Ph.03 8549 9600 Elsamples.triabena@alsativ.co.com CI Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 Ci Townsville: 14-15 Dearna Ci Bohle Of 0 4916 Ph C2 4968 9433 E camples hewcastleid alserivice com Ph/07 4756 0600 E: townsuits environmentalitietranem com

C Adelaide: 2-1 Suma Rd Pooraka SA 6095 Ph. 08 9359 0896 Fradelaus/Astronato.com

C Perth: 10 Hod Way, Malaga WA 8090 Ph 06 9209 7665 E: samples perth@alsenviro.com C Launceston: 27 Wallington St. Laundeston TAS 7250 Ph 03 6331 2158 Et laundeston St. Laundeston TAS 7250

1.

(/			1						figures and second		PR. 06 0601 21.	sa c. annocsiongai	
CLIENT:	Shellharbour City Council		TURNAR	OUND REQUIREMENTS :	Standard TAT (List	due date):					FORL	ABORATORY U	
	41 Burelli St WOLLONGONG NSW 2	2500	e.g Ultra T	Trace Organics)	Non Standard or un	gent TAT (L	.ist due date)	:			Custody	r Sodi Intact?	No NA
PROJECT:	Dunmore Quarterly Ground Waters	S EPL	ALS QUO	DTE NO.: WO/030	/19 TENDER			COC SEQU	UENCE NUME	BER (Circle)	receipt?	in the second second second	
PRO JECT MANAGER	Rvan Stirling						COC:		34	56	7 Random	n Sample Temperah	1 ^{™ Receipt} 5•1. [∞]
		SAMPLER N	OBILE:				REC		3 4	5 6			Environmental Division
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defa	ult):	Robert D	chio		L	In .		KEEINQ0131		Wollongong
Email Reports to :	<u> </u>		•		DATE/TIME:		DAT	TIME:			DATE/TIME:	.· · ·	
Email Invoice to :					2.3.23			2.3	23/				EW2300830
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL	.: CC reports to:											(())) ()) () () () ())
ALS USE ONLY	SAMPLE	DETAILS		CONTAINER INFO	RMATION	ANALY	SIS REQUIR	ED includi	ng SUITES	NB. Suite Co	des must be liste	d to attract suite p	
	MATRIX: SOI	d(5) water(w)				Whe	re Matals are req	uired, specify T	otal (unfiltered b	ottle required) o	Dissolved (field fil)	tered bottle required).	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIN (refer to codes below)	/E TOTAL BOTTLES	monia	-2A (Alka, 4, Cl, Fl) ered Ca, K	o	solved Fe &	4 (NO2, 3)	ld to ofins		Telephone : 02 42253125
				·		Am	ΞŚΞ	<u>P</u>	M M	1 ż S	nur Ser	4	
	внас 2.	3.23 11:40	, w			4	1	1	1	-			Field Tests - pH, EC, Temp & SWL
·	ВНЗ	12:23	w			1	1	. 1	1	1			Field Tests - pH, EC, Temp & SWL
	BH4	13:15	w			1	1	4	1	1			Field Tests - pH, EC, Temp & SWL
	BH9	b'.50	w			4	1	✓.	1	1			Field Tests - pH, EC, Temp & SWL
	BH12R	12:40	w			4	√	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH13	10:55	w			1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH14	11.12	w			1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
•	BH15	10:05	w			1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH19R	12:55	w			1	×	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH18	9:00	w				 ✓ 	1	1	 ✓ 			Field Tests - pH, EC, Temp & SWL
	BH21	6:40	w			1	 ✓ 	*	1	~	-		Field Tests - pH, EC, Temp & SWL
	BH22	12:10.	w			1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
,	Duplicate	Linos	w	9:00	*	1	1	*	1	1			Field Tests - pH, EC, Temp & SWL
	Triplicate	1 9:00	w	Rn(.							1		
				· · · ·				-					
1001 X 1/ 401 X 101 Y													
					TOTAL 10								
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preserve	ed Plastic; ORC = Nitric Preserve	d ORC; SH	= Sodium Hydroxide/Cd Preserved;	S = Sodium Hydroxide Pre	served Plas	tic; AG = Ambe	r Glass Unpr	eserved; AP -	I Airfreight Un;	preserved Plastic	;	

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	EW2300850	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 02-Mar-2023 15:40
Order number	: 147649	Date Analysis Commenced	: 02-Mar-2023
C-O-C number	:	Issue Date	: 14-Mar-2023 12:38
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS		Accordition No. 925
No. of samples received	: 14		Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate due to sample matrix
- It has been noted that Nitrite is greater than NOx, however this difference is within the limits of experimental variation sample #9
- EK057G/EK059G: It has been noted that Nitrite is greater than NOx on sample 3, however this difference is within the limits of experimental variation.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via High Flow and Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	02-Mar-2023 01:40	02-Mar-2023 12:23	02-Mar-2023 13:15	02-Mar-2023 08:30	02-Mar-2023 10:40
Compound	CAS Number	LOR	Unit	EW2300850-001	EW2300850-002	EW2300850-003	EW2300850-004	EW2300850-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.1	7.3	7.4	7.2	6.8
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	μS/cm	7960	1230	688	3690	1670
Compensated)								
EA116: Temperature								
Temperature		0.5	°C	24.8	18.5	18.3	18.8	19.7
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2650	318	261	1760	619
Total Alkalinity as CaCO3		1	mg/L	2650	318	261	1760	619
ED041G: Sulfate (Turbidimetric) as SO4 2- by	y DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	143	51	<10	208
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	1060	140	51	382	174
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	148	134	92	183	207
Potassium	7440-09-7	1	mg/L	240	36	16	88	28
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.111	0.072	0.103	0.663	0.552
Iron	7439-89-6	0.05	mg/L	12.4	0.18	2.19	0.81	9.67
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.2	0.1	0.4	0.2
EK055G: Ammonia as N by Discrete Analyse	ər							
Ammonia as N	7664-41-7	0.01	mg/L	285	10.6	2.00	122	4.24
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.14	0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analyser								
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	3.20	<0.01	0.02	<0.01
EK059G: Nitrite plus Nitrate as N (NOx) by D	Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	3.34	<0.01	0.02	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	180	17	11	64	20

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	02-Mar-2023 01:40	02-Mar-2023 12:23	02-Mar-2023 13:15	02-Mar-2023 08:30	02-Mar-2023 10:40
Compound	CAS Number	LOR	Unit	EW2300850-001	EW2300850-002	EW2300850-003	EW2300850-004	EW2300850-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	3.02	3.10	4.32	3.09	4.23

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18				
		Sampli	ng date / time	02-Mar-2023 10:55	02-Mar-2023 11:12	02-Mar-2023 10:05	02-Mar-2023 12:55	02-Mar-2023 09:00				
Compound	CAS Number	LOR	Unit	EW2300850-006	EW2300850-007	EW2300850-008	EW2300850-009	EW2300850-010				
				Result	Result	Result	Result	Result				
EA005FD: Field pH												
pH		0.1	pH Unit	6.9	7.0	6.8	7.5	6.8				
EA010FD: Field Conductivity												
Electrical Conductivity (Non Compensated)		1	μS/cm	1930	762	2570	638	601				
EA116: Temperature												
Temperature		0.5	°C	20.7	20.0	18.5	18.3	20.8				
ED037P: Alkalinity by PC Titrator												
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1				
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1				
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	744	359	471	339	272				
Total Alkalinity as CaCO3		1	mg/L	744	359	471	339	272				
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA												
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	58	73	366	26	<10				
ED045G: Chloride by Discrete Analyser												
Chloride	16887-00-6	1	mg/L	245	30	476	29	31				
ED093F: Dissolved Major Cations												
Calcium	7440-70-2	1	mg/L	206	96	137	73	80				
Potassium	7440-09-7	1	mg/L	21	14	174	41	11				
EG020F: Dissolved Metals by ICP-MS												
Manganese	7439-96-5	0.001	mg/L	0.419	0.107	0.273	0.055	0.139				
Iron	7439-89-6	0.05	mg/L	3.45	0.55	9.33	0.89	2.02				
EK040P: Fluoride by PC Titrator												
Fluoride	16984-48-8	0.1	mg/L	0.2	0.6	0.2	0.2	0.2				
EK055G: Ammonia as N by Discrete Analys	er											
Ammonia as N	7664-41-7	0.01	mg/L	5.31	1.18	8.12	2.28	1.02				
EK057G: Nitrite as N by Discrete Analyser												
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.03	0.02	<0.01				
EK058G: Nitrate as N by Discrete Analyser												
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.17	<0.01	<0.01				
EK059G: Nitrite plus Nitrate as N (NOx) by	Discrete Anal	yser										
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.20	0.01	<0.01				
EP005: Total Organic Carbon (TOC)												
Total Organic Carbon		1	mg/L	28	13	34	6	14				

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	02-Mar-2023 10:55	02-Mar-2023 11:12	02-Mar-2023 10:05	02-Mar-2023 12:55	02-Mar-2023 09:00
Compound	CAS Number	LOR Unit		EW2300850-006	EW2300850-007	EW2300850-008	EW2300850-009	EW2300850-010
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	4.19	4.62	0.53	4.52	2.10

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate						
		Sampli	ng date / time	02-Mar-2023 09:40	02-Mar-2023 12:10	02-Mar-2023 09:00						
Compound	CAS Number	LOR	Unit	EW2300850-011	EW2300850-012	EW2300850-013						
				Result	Result	Result						
EA005FD: Field pH												
рН		0.1	pH Unit	7.2	7.5	6.8						
EA010FD: Field Conductivity												
Electrical Conductivity (Non Compensated)		1	μS/cm	2480	2250	601						
EA116: Temperature												
Temperature		0.5	°C	21.7	18.5	20.8						
ED037P: Alkalinity by PC Titrator												
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1						
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1						
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	851	651	281						
Total Alkalinity as CaCO3		1	mg/L	851	651	281						
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA												
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	145	223	<10						
ED045G: Chloride by Discrete Analyser												
Chloride	16887-00-6	1	mg/L	339	240	32						
ED093F: Dissolved Major Cations												
Calcium	7440-70-2	1	mg/L	169	113	81						
Potassium	7440-09-7	1	mg/L	23	39	11						
EG020F: Dissolved Metals by ICP-MS												
Manganese	7439-96-5	0.001	mg/L	0.507	0.043	0.142						
Iron	7439-89-6	0.05	mg/L	0.26	0.06	2.02						
EK040P: Fluoride by PC Titrator												
Fluoride	16984-48-8	0.1	mg/L	0.4	0.4	0.2						
EK055G: Ammonia as N by Discrete Analy	yser											
Ammonia as N	7664-41-7	0.01	mg/L	2.64	35.0	1.10						
EK057G: Nitrite as N by Discrete Analyse	r											
Nitrite as N	14797-65-0	0.01	mg/L	0.32	<0.01	<0.01						
EK058G: Nitrate as N by Discrete Analyse	er											
Nitrate as N	14797-55-8	0.01	mg/L	9.68	<0.01	<0.01						
EK059G: Nitrite plus Nitrate as N (NOx) b	by Discrete Ana	lyser										
Nitrite + Nitrate as N		0.01	mg/L	10.0	<0.01	<0.01						
EP005: Total Organic Carbon (TOC)												
Total Organic Carbon		1	mg/L	33	29	14						

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampling date / time		02-Mar-2023 09:40	02-Mar-2023 12:10	02-Mar-2023 09:00	
Compound	CAS Number	LOR Unit		EW2300850-011	EW2300850-012	EW2300850-013	
				Result	Result	Result	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	2.97	2.60	2.10	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

······································														
ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	 Sydney: 277 Woodpark Ph: 02 8784 8555 Eisample Newcastle: 5 Rosegum Ph:02 4968 9433 Eisample 	Rd, Smithfield NS s.sydney@alsen Rd, Warabrook N s newcastle@als-	SW 2176 Brisbane: 32 S viro.com Ph:07 3243 7222 E ISW 2304 Townsville: 14 enviro.com Ph:07 4796 0600 E	ihand St, Stafford (:samples.brisbane 15 Desma Ct, Bol : towneville.environm	QLD 4053 @alsenviro.co hie QLD 4818 ental@alsenviro	om Ph.(3 D 2.com Ph	Melbourne: 2 13 8549 9600 Adelaide: 2-1 08 8359 0890	8-4 Westall Rd, E: samples.me I Burma Rd, Po) E:adelaide@a	Springvale VIC Ibourne@alser oraka SA 5095 Ilsenviro.com	: 3171 Niro.com ;	 Perth: 10 H Ph: 08 9209 76 Launcesto Ph: 03 6331 2 	ed Way, Malaga W 355 E: semples.pert n: 27 Wellington St. 158 E: launceston@	A 6699 tsi@aleenviro.com Lauriceaton 7AS 7250 @aleenviro.com
CLIENT:	Shellharbour City Council		TURNAROL	JND REQUIREMENTS :	Standard	TAT (List d	lue date):					FOR	LABORATORY	USE ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW 250	0	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)			dard or urge	ent TAT (Lis	t due date):	:			Cusio	dy Seel Intect?	Yes No 🔭
PROJECT:	Dunmore Quarterly Surface Waters EP	L	ALS QUOTE NO.: WO/030/19 TEND						COC SEQUI	NCE NUMBE	ER (Circle)	receip	er nozer kenne G	No NA
ORDER NUMBER:	,							COC:	1 2	34	56	7 Randi	m Sample Tempe	rature on Receipt 10.4 2
PROJECT MANAGER:	Ryan Stirling				·			OF:	1 2	3 4	5 6	7 Other	comment	
SAMPLER: Robert Datio SAMPLER MOBILE:					RELINQUISH	ELINQUISHED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY:				RECEIVED BY:				
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or default):	labe	-+ I.	Dertis	, 14	-ار، بعن ال	12	LN		_	
Email Reports to :					DATE/TIME:	TE/TIME: DATE/TIME: DATE/TIME:			DATE/TIME:					
Email Invoice to :			- 4 0		1.2		`	-	1. 2.	4.9				
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL:	CC reports to	:											
ALS USE ONLY	SAMPLE DETAILS CONTAINER INF MATRIX: Solid(S) Water(W)				+ORMATION ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Additional Information Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).					price) Additional Information				
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below	IVE #) B	TOTAL	TSS	NT-1, NT-2A (Ionic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NÓ3	TSS, TDS, TOC, Total Mn	Comments on likely contaminant levels. dilutions, or samples requiring specific QC analysis etc.
	SWP1	212 10	w				1	4	1	1				Field Tests - pH, EC, DO & Temp
	SWC_2	10.01 10'A	w					1		1	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_UP	11.00	w					4		1	1	1	×	Field Tests - pH, EC, DO & Temp
	SWC_DOWN	11:30	w					4		1	1	1		Field Tests - pH, EC, DO & Temp

at a s

✓

1

10 TOTAL Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserve V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfunic Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

w

W

11:40

10:05

Telephone : 02 42253125

1

1

1

1

1

✓

✓

1

Environmental Division

Wollongong Work Order Reference EW2300849

Field Tests - pH, EC, DO & Temp

Field Tests - pH, EC, DO & Temp

ISS:

Duplicate

SWC_DOWN_2

CERTIFICATE OF ANALYSIS

Work Order	EW2300849	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 01-Mar-2023 15:39
Order number	: 147649	Date Analysis Commenced	: 01-Mar-2023
C-O-C number	:	Issue Date	: 14-Mar-2023 11:09
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		Accorditation No. 925
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EG020: Total Manganese results for samples EW2300849-#001 and #006 confirmed by re-digestion and reanalysis.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22		
		Sampli	ng date / time	01-Mar-2023 00:00	01-Mar-2023 00:00	01-Mar-2023 00:00	01-Mar-2023 00:00	01-Mar-2023 00:00		
Compound	CAS Number	LOR	Unit	EW2300849-001	EW2300849-002	EW2300849-003	EW2300849-004	EW2300849-005		
				Result	Result	Result	Result	Result		
EA005FD: Field pH										
pH		0.1	pH Unit	7.5	7.3	7.1	7.2	7.3		
EA010FD: Field Conductivity										
Electrical Conductivity (Non		1	µS/cm	1210	27500	24200	23800	23300		
Compensated)										
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C									
Total Dissolved Solids @180°C		10	mg/L		14100	17200	15900	15400		
EA025: Total Suspended Solids dried at 104 ± 2°C										
Suspended Solids (SS)		5	mg/L	99						
Suspended Solids (SS)		5	mg/L		<5	<5	<5	<5		
EA045: Turbidity										
Turbidity		0.1	NTU	40.0	2.2	3.2	2.9	2.9		
EA116: Temperature										
Temperature		0.5	°C	21.9	22.9	22.3	23.8	23.7		
ED037P: Alkalinity by PC Titrator										
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	397	114	138	131	127		
Total Alkalinity as CaCO3		1	mg/L	397	114	138	131	127		
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA									
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	53	1390	913	886	835		
ED045G: Chloride by Discrete Analyser										
Chloride	16887-00-6	1	mg/L	147	9180	8150	7720	7640		
ED093F: Dissolved Major Cations										
Calcium	7440-70-2	1	mg/L	67	201	180	170	170		
Magnesium	7439-95-4	1	mg/L	33	633	552	522	513		
Sodium	7440-23-5	1	mg/L	161	5460	4750	4510	4340		
Potassium	7440-09-7	1	mg/L	13	194	173	163	159		
EG020F: Dissolved Metals by ICP-MS										
Iron	7439-89-6	0.05	mg/L	0.20	0.08	0.10	0.05	<0.05		
EG020T: Total Metals by ICP-MS										
Manganese	7439-96-5	0.001	mg/L	0.570	0.180	0.204	0.218	0.219		
Iron	7439-89-6	0.05	mg/L	1.45	0.46	0.61	0.59	0.58		
EK040P: Fluoride by PC Titrator										

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22				
		Sampli	ng date / time	01-Mar-2023 00:00	01-Mar-2023 00:00	01-Mar-2023 00:00	01-Mar-2023 00:00	01-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EW2300849-001	EW2300849-002	EW2300849-003	EW2300849-004	EW2300849-005				
				Result	Result	Result	Result	Result				
EK040P: Fluoride by PC Titrator - Continued												
Fluoride	16984-48-8	0.1	mg/L	0.3	0.8	0.7	0.8	0.7				
EK055G: Ammonia as N by Discrete Analyser												
Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.19	0.07	0.25	0.12				
EK055G-NH4: Ammonium as N by DA												
Ammonium as N	14798-03-9_N	0.01	mg/L	0.03	0.19	0.07	0.25	0.12				
EK057G: Nitrite as N by Discrete Analyser												
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.01	<0.01	0.01	0.01				
EK058G: Nitrate as N by Discrete Analys	er											
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.02	0.01	0.01				
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser										
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	0.02	0.02	0.02				
EN055: Ionic Balance												
Ø Total Anions		0.01	meq/L	13.2	290	252	239	235				
Ø Total Cations		0.01	meq/L	13.4	304	265	252	244				
Ø Ionic Balance		0.01	%	0.80	2.42	2.66	2.64	1.69				
EP005: Total Organic Carbon (TOC)												
Total Organic Carbon		1	mg/L	24	7	7	7	<1				
EP025FD: Field Dissolved Oxygen												
Dissolved Oxygen		0.01	mg/L	8.53	4.16	4.79	4.92	5.26				

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	01-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EW2300849-006	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.7	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	1210	 	
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	774	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	35	 	
EA045: Turbidity						
Turbidity		0.1	NTU	18.7	 	
EA116: Temperature						
Temperature		0.5	°C	21.9	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	435	 	
Total Alkalinity as CaCO3		1	mg/L	435	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	54	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	154	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	66	 	
Magnesium	7439-95-4	1	mg/L	33	 	
Sodium	7440-23-5	1	mg/L	167	 	
Potassium	7440-09-7	1	mg/L	13	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	0.19	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.426	 	
Iron	7439-89-6	0.05	mg/L	1.33	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Samplii	ng date / time	01-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EW2300849-006	 	
				Result	 	
EK055G: Ammonia as N by Discrete Anal	yser					
Ammonia as N	7664-41-7	0.01	mg/L	0.01	 	
EK055G-NH4: Ammonium as N by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	<0.01	 	
EK057G: Nitrite as N by Discrete Analyse	ə r					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analys	er					
Nitrate as N	14797-55-8	0.01	mg/L	0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.01	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	14.2	 	
Ø Total Cations		0.01	meq/L	13.6	 	
Ø Ionic Balance		0.01	%	1.99	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	16	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	8.51	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

À	CHAIN OF CUSTODY ALS Laboratory: please tick →	 Sydney: 277 Woodper Ph. 02 9784 9555 E samp Newcastle: 5 Rosegur Ph.02 4988 9433 E samp 	k Rd. Smithüeld N Jestsychey@alser n Rd. Watabrook I Jestnewcastlet@als	SW 2176 [] Brisbane: 32 S vire com Ph:07 3243 7222 E NSW 2304 [] Townsville: 14 serviro com Ph:07 4796 0500 E	Shand St. Stafford QLD 4053 5 samples brisbaneiĝalsenvin 4-15 Desma Ct. Bonle QLD 481 5: tovnsellsjeruronmental@alseru	com Ph 8 Ci ro.ceni Pt	Melbourne: 2 03 8649 0600 Adelaide: 2-1 1. 08 8359 0890	-4 Wastali Rd. E: samplas.me Burma Rd. Po) E.adelaida@a	Spangvale VK albourne@alse soraka SA 509 alseoviro com	3 3171 av tulcom 6	 Perth: 10 I Ph: 08 9209 7 Launcesta Ph: 03 6331 	Hod Wey, Malaga W/ 7665 E: samples.perti on: 27 Weilingtor: St. 2158 E: tauncestor @	A 6090 h/ĝaisenviro.: Launceston T Balsenviro cor	30m (AS (250) n
LS) 	Sheilharbour City Council	1.1.02 metro (metro)	TURNARO	UND REQUIREMENTS :	Standard TAT (List	due date):	·				FOR	LABORATORY	USE ONL	(Circle)
:E:	41 Burelli St WOLLONGONG NSW 2	2500	(Standard TA e.g., Ultra Tra	f may be longer for some tests ce Organics)	Non Standard or urg	ent TAT (Li	st due date):				Cust	xdy Seal latact (Ica I filozian lion tife)	ka present la	· · · · · · · · · · · · · · · · · · ·
ECT:	Dunmore Quarterly Leachate		ALS QUOT	E NO.: WO/03	30/19 TENDER			COC SEQUI	ENCE NUMB	ER (Circle) recei	109 (1010-1020) 1917	10 Plote	<u> </u>
R NUMBER:	,,,						COC:	1 2	34	56	7 Rand	iom Sample Tempe	erature on Re	^{osta} 10.4 °
ECT MANAGER:	Ryan Stirling						OF:	1 2	3 4	56	7 Othe	rcomment		
	hert D.L.	SAMPLER	MOBILE:		RELINQUISHED BY:	-	RECI	EIVED BY:		~ :	RELINQU	ISHED BY:		RECEIVED BY:
amailed to ALS2		EDD FORM	AT (or defaul	t):	[Lobert	Derki		Kobé	チナノ	うち				
Reports to :					DATE/TIME:		DATE	E/TİME:	<u>.</u> •		DATE/TIM	E:		DATE/TIME:
Invoice to :					1.34	.3		1.3.	23					
MENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to												
LSUSEONLY	SAMPLE MATRIX: Sol	E DETAILS lid(S) Water(W)		CONTAINER INF	ORMATION	ANALY	SIS REQUIR e Metals are req	ED includir	ng SUITES (NB. Suite Co	odes must be li or Dissolved (fiel	isted to attract suite	a price) d}.	Additional Information
		DATE / TIME	MATRIX	TYPE & PRESERVA	TIVE TOTAL	lia	(Alka, , Fl) I Ca, K		e & Mn	102,		z	Ce or	omments on likely contaminant levels, d samples requiring specific QC analysis
LAB ID	SAMPLE ID	DATE	MALINIA	(refer to codes belo	W) BOTTLES	Ammor	NT-2A So4, CI Filtered	100	Total F	NT-4 (N NO3)				
	Leachate Sump	B. 23 12:1	5 W			1	1	1	 ✓ 	1		~		Field Tests - pH, EC, Temp &
										Ì				
											ļ			
											Envir Wolk	ronmental ongong	Divisi	01
											wa E	W230	eference)084	16
						<u> </u>			-			# _ " Dim"+		
	· · · ·						<u> </u>	•						
													11 - 1. 11 - 1 - 1	
											Telepho	ne : 02 42253126	6	
							_			<u> </u>				
						· · · · · · · · · · · · · · · · · · ·			-					
					TOTAL 10									

.

CERTIFICATE OF ANALYSIS

Work Order	EW2300846	Page	: 1 of 4				
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast				
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski				
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia				
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529						
Telephone	:	Telephone	: +61 2 4225 3125				
Project	: Dunmore Quarterly Leachate	Date Samples Received	: 01-Mar-2023 15:40				
Order number	: 147649	Date Analysis Commenced	: 03-Mar-2023				
C-O-C number	:	Issue Date	: 10-Mar-2023 15:51				
Sampler	: Robert DaLio		HALA NATA				
Site	: DUNMORE LANDFILL TENDER						
Quote number	: WO/030/19 TENDER LEACHATE		The Annual Annual Annual Annual Annual Annual				
No. of samples received	: 1		Accredited for compliance with				
No. of samples analysed	: 1		ISO/IEC 17025 - Testing				

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G: LOR raised for sample 1 due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix
- EK059G: LOR raised for NOx due to sample matrix
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Sump	 	
		Sampli	ng date / time	01-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EW2300846-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.9	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	10100	 	
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5460	 	
EA116: Temperature						
Temperature		0.1	°C	27.7	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	967	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2110	 	
Total Alkalinity as CaCO3		1	mg/L	3070	 	
ED041G: Sulfate (Turbidimetric) as SO4 :	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<20	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1540	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	40	 	
Potassium	7440-09-7	1	mg/L	400	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.113	 	
Iron	7439-89-6	0.05	mg/L	1.35	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	
EK055G: Ammonia as N by Discrete Ana	lyser					
Ammonia as N	7664-41-7	0.01	mg/L	426	 	
EK057G: Nitrite as N by Discrete Analys	er					
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Analys	ser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.10	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Sump	 	
		Sampling date / time		01-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EW2300846-001	 	
				Result	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	384	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	2.14	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	28.1	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 \pm 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CHAIN OF CUSTODY ALS Laboratory: please tick ->

C Sydney, 277 Woodpark Rd, Smithfield NSW 2178 Ph: 02 8794 9656 Elsamples svine y@plaenviro.com

 Brisbane, 32 Shand St, Stafford QLD 4063
 Ph.07 3243 7222 Elsamples trisbane@arsenveb.com En cuz cross sobiliti camples consegue anter en cuant El Newcastlet 5 Roseguer Rd, Warabrook NSW 2304 El Newcastlet 5 Roseguer Rd, Warabrook NSW 2304 En Commavillet 14-15 Desma Ch Bohle CLD 4915 Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 3433 Examples newcastlog alsonie inter com Ph.02 4963 4433 Examples newcastlog alsonie inter com

Ci - **Melbourne**, 2-4 Westall Rd. Springvale VIO 3171 Ph/03 8549 9600 El samples inelbourne@atsenvin.com D. Adetaide: 2-1 Burma Ro, Pocraka SA 5096
 Ph. 08 8359 0860 Etadetaide@alsenviro.com

El Parth: 10 Hod Way, Malaga WA 8090 Ph: 08 9009 7855 El samples perth@alsenviro.com Launceston: 27 Wellington St, Launceston TAS 7260
 Ph. 03 8321 2158 E launceston dialservin com

CLIENT:	Shellharbour City Council				Standard TAT	(List d	ue date):					FO	LABORA	TORY USE	ONLY (Circle)	
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	e.g. Ultra Tra	ce Organics)	Non Standard	or urge	nt TAT (Lis	due date)	:			Cust	ody Seal Inla	d?	Yes No.	- (NA)
PROJECT:	Dunmore Quarterly Leachate		ALS QUOT	E NO.: WO/0	30/19 TENDER			COC SEQUENCE NUMBER (Circle)				Erec	lcə/frozen i +*?	ve bricks pies	ent upon Fes No	N/A
ORDER NUMBER:								coc	1 2	34	56	7 Ren	Iom Sample '	Temperature o	on Receipt 1	
PROJECT MANAGER	: Ryan Stirling							OF:	1 2	34	56	7 Qthe	r comment:		$(-\pi)$	
SAMPLER: 20	be-t Dal	SAMPLER	MOBILE:		RELINQUISHED B	Y: _		REC	EIVED BY:		,	RELINQU	ISHED BY:		RECEIVED BY:	
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or default	;):	- 1202at	1_	Deg K 1X	• †	4000	アピ	w					
Email Reports to :	mail Reports to :										DATE/TIM	E:	•	DATE/TIME:		
Email Invoice to :	mail Invoice to :					ל		1	3.2	2						
COMMENTS/SPECIAL	L HANDLING/STORAGE OR DISPOSA	L: CC reports to	:		· ·										,	
ALS USE ONLY	SAMPLI MATRIX: So	E DETAILS lid(S) Water(W)		CONTAINER INF	ORMATION		ANALYSI Where I	S REQUIR	ED Includi	ing SUITES	(NB. Suite Co ottle required) or	des must be l Dissolved (fie)	isted to attrac	t suite price) required).	Additional Informa	tion
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo	TIVE TOTA w) BOTTI	IL .ES	Ammonia	NT-2A (Alka, So4, CI, FI) Filtered Ca, K	100	Total Fe & Mn	NT-4 (NO2, NO3)		-		Comments on likely contaminant or samples requiring specific QC a	evels, dilutions, inalysis etc.
	Leachate Storage Tank - LP1	1232 17	w.w				1	4	1	1	1				Field Tests - pH EC T	

	Leachate Storage Tank - LP1	1.3.23 12	20 ·W				1	¥	1	1	×	•		Field Tests - pH, EC, Temp & DO
												ntal Divis	sion	
				-						E	nvironm Nollondo	ng	Cê.	
										\	Work Or	2300	<u>8</u> 47	
											Evv	2000		
												12.1210 101		
·										n			3. 111	
										<u>.</u> .		NG DAT F	NET I	
				- ne : = :						,	Telephone	02 42253125		
ب مراجع	-													
					TOTAL	10								
V = VOA Vial HCI Preserved Z = Zinc Acetate Preserved ENFM204	P = Unpreserved Plastic; N = Nitric Preserved Plastic; N = Nitric Preserved; VB = VOA Vial Sodium Bisulphate Preserved Bottle; E = EDTA Preserved Bottle; ST =	ved Plastic; ORC = Nitric Prese rved; VS = VOA Vial Sulfuric P Sterile Bottle; ASS = Plastic Be	rved ORC; SH = eserved; AV = Air g for Acid Sulpha	Sodium Hydroxide/Cd Pres freight Unpreserved Vial So te Soils; B = Unpreserved E	erved; S = Sodium I G = Sulfuric Preserv lag	Hydroxide Pre ed Amber Gla	served Plastic ass; H = HCI	c; AG = Ambe preserved Pl	er Glass Unpre astic; HS = H	served; AP - CI preserved	Airfreight Unpres Speciation bottle;	erved Plastic SP = Sulfuric Pres	erved Plastic; F =	Formaldehyde Preserved Glass;

CERTIFICATE OF ANALYSIS

Work Order	EW2300847	Page	: 1 of 4					
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast					
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski					
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia					
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529							
Telephone	:	Telephone	: +61 2 4225 3125					
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 01-Mar-2023 15:41					
Order number	: 147649	Date Analysis Commenced	: 01-Mar-2023					
C-O-C number	:	Issue Date	: 13-Mar-2023 11:38					
Sampler	: Robert DaLio		HALA NALA					
Site	: DUNMORE LANDFILL TENDER							
Quote number	: WO/030/19 TENDER LEACHATE		Accorditation No. 925					
No. of samples received	: 1		Accredited for compliance with					
No. of samples analysed	:1		ISO/IEC 17025 - Testing					

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- EK059G, EK057G: NOx and Nitrite on sample no:1 confirmed by re-analysis.
- ED041G: LOR raised for Sulfate due to sample matrix
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage	 	
				I P1		
		Sampli	ng date / time	01-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EW2300847-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	9.4	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	9260	 	
EA015: Total Dissolved Solids dried at 180) ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5370	 	
EA116: Temperature						
Temperature		0.1	°C	24.8	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	1080	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2060	 	
Total Alkalinity as CaCO3		1	mg/L	3150	 	
ED041G: Sulfate (Turbidimetric) as SO4 2-	by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<20	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1460	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	37	 	
Potassium	7440-09-7	1	mg/L	393	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.092	 	
Iron	7439-89-6	0.05	mg/L	1.24	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discrete Analy	vser					
Ammonia as N	7664-41-7	0.01	mg/L	432	 	
EK057G: Nitrite as N by Discrete Analyse	r					
Nitrite as N	14797-65-0	0.01	mg/L	2.16	 	
EK058G: Nitrate as N by Discrete Analyse	er					
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	y Discrete Ana	lyser				

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	01-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EW2300847-001	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx) t	by Discrete Ana	lyser - Co	ntinued			
Nitrite + Nitrate as N		0.01	mg/L	0.20	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	373	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	5.66	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	70.5	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

Appendix D:

Laboratory Chain of Custody (COC) & Certificates of Analysis

(COA) – Water Samples – Quarter 3

FICE:			10101040		ard IAI IList	due date):					EOR	LABORATORY USE	DNLY (Circle)
OJECT:	41 Burelli St WOLLONGONG NSW 2	2500	(Standard T	T may be longer for some tests	tandard or urg	gent TAT (L	_ist due date}:				Gusto	xdy Seal Intext?	Yes) No I
	Dunmore Quarterly Ground Waters	SEPL	ALS QUO	TE NO.: WO/030/19 TENDI	ER			COC SEQ		ER (Circle)	Free	ice / frozen ice bricks pres st?	ert upon
DER NUMBER:			COC: 1 2 3 4						56	7 Rand	om Sample Temperature i	on Receipt:	
OJECT MANAGER:	Ryan Stirling						OF:	1 2	34	56	7 Other	GUIRTIERIC	
MPLER: Koba	et Dalis/M	Sampler 1	MOBILE:		SHED BY:	\sim /	RECE	EIVED BY:	G		RELINQUI	SHED BY:	RECEIVED BY:
C emailed to ALS? (YES / NO)	EDD FORM	AT (or detau		cert o	AL,		ner	4		DATECTIM	- .	
all Invoice to :				2.6	.2	3		7161	23	14:6		• • • •	DATE/TIME.
MMENTS/SPECIAL I	HANDLING/STORAGE OR DISPOSA	L: CC reports to	 :		•				-	1 1 • •			
			· · · · · · · · · · · · · · · · · · · ·			-							
ALS USE ONLY	SAMPLE MATRIX: Sol	DETAILS Id(S) Water(W)		CONTAINER INFORMATION		ANAL T	re Metais are requ	ired, specify T	otal (unfiltered b	NB, Suite Co	aes must be lis r Dissolved (field	sted to attract suite price) I filtered bottle required).	Additional Information
LAB ID	LABID SAMPLE ID DATE / TIME M			TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	umonia (NT-2A (Alka, to4, Cl, Fl) iltered Ca, K	n-za (arka, da, Cl, Fl) Itered Ca, K OC OC issolved Fe & n		IT-4 (NO2, 103)	commor san		Comments on likely contaminant levels, diut or samples requiring specific QC analysis etc
	внас 2	(-23 g:#	> w			∢	<u>- 67 ⊞</u>	⊢ ✓	<u>□</u> ≥ ✓	<u>∠∠</u> √	юш		Field Tests - pH, EC, Temp & S
	BH3	1 12:50	w			1	1	1	1	1			Field Tests - pH, EC, Temp & S
	BH4	12:2=	, w			1	1	1	1	1			Field Tests - pH, EC, Temp & S
	ВН9	8:55	w			4	1	1	1	1			Field Tests - pH, EC, Temp & S
	BH12R	11:23	w ·			1	1	. 🖌	*	1			Field Tests - pH, EC, Temp & S
	BH13	11:50	> w			1	1	4	. 1	1			Field Tests - pH, EC, Temp & S
	BH14	12:05	w			1	1	1	1	1			Field Tests - pH, EC, Temp & S
	BH15	(1:10	w			1	4	1	×	1			Field Tests - pH, EC, Temp & S
	BH19R	(3:05	w	Environmental Divisio	้า	1	1	1	1	1			Field Tests - pH, EC, Temp & S
	BH18	10:25	w	Wollongong Work Order Reference			1	1	1	1			Field Tests - pH, EC, Temp & \$
	BH21	10:45	, w	EW230241	6	1	1	1	1				Field Tests - pH, EC, Temp & S
	BH22	9:25	w		01		1		 ✓ 	•			Field Tests - pH, EC, Temp & S
	Duplicate	10.15	w				1	4		1			Field Tests - pH, EC, Temp & S
	Triplicate	10:25	w			:					~		
				Telephone : 02 42253125									

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; SV = VOA Vial Sulfuric Preserved; AV = Alfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	EW2302416	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 02-Jun-2023 14:09
Order number	: 147649	Date Analysis Commenced	: 02-Jun-2023
C-O-C number	:	Issue Date	: 15-Jun-2023 17:48
Sampler	: Michael Santos, Robert DaLio		Hac-MRA NATA
Site	DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS		The Contraction of the second
No. of samples received	: 14		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate due to sample matrix
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via High Flow and Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampl	ing date / time	02-Jun-2023 09:40	02-Jun-2023 12:50	02-Jun-2023 12:25	02-Jun-2023 08:55	02-Jun-2023 11:23
Compound	CAS Number	LOR	Unit	EW2302416-001	EW2302416-002	EW2302416-003	EW2302416-004	EW2302416-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	7.5	7.4	7.2	6.8
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	7945	1200	751	4120	1930
EA116: Temperature								
Temperature		0.5	°C	25.9	18.9	18.9	18.0	21.1
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2600	370	310	1790	571
Total Alkalinity as CaCO3		1	mg/L	2600	370	310	1790	571
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	146	70	50	178
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	970	123	35	516	246
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	116	101	94	181	185
Potassium	7440-09-7	1	mg/L	207	31	16	76	27
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.103	0.082	0.097	0.708	0.532
Iron	7439-89-6	0.05	mg/L	11.6	0.27	2.59	0.89	9.38
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.5	0.2	0.1	0.6	0.3
EK055G: Ammonia as N by Discrete Ana	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	298	12.3	2.04	141	3.59
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.13	<0.01	<0.01	0.07
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	1.37	<0.01	0.03	0.39
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	1.50	<0.01	0.03	0.46
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	186	22	10	76	24

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	02-Jun-2023 09:40	02-Jun-2023 12:50	02-Jun-2023 12:25	02-Jun-2023 08:55	02-Jun-2023 11:23
Compound	CAS Number		Unit	EW2302416-001	EW2302416-002	EW2302416-003	EW2302416-004	EW2302416-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	3.09	3.08	4.28	3.86	4.25

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	02-Jun-2023 11:50	02-Jun-2023 12:05	02-Jun-2023 11:10	02-Jun-2023 13:05	02-Jun-2023 10:25
Compound	CAS Number	LOR	Unit	EW2302416-006	EW2302416-007	EW2302416-008	EW2302416-009	EW2302416-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.8	6.9	7.0	7.4	6.8
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	2260	958	2250	731	511
EA116: Temperature								
Temperature		0.5	°C	21.9	21.1	17.1	18.9	20.7
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	812	422	507	336	267
Total Alkalinity as CaCO3		1	mg/L	812	422	507	336	267
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	67	50	366	39	<10
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	308	36	340	38	16
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	213	106	112	74	60
Potassium	7440-09-7	1	mg/L	29	12	138	49	10
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.409	0.123	0.260	0.063	0.067
Iron	7439-89-6	0.05	mg/L	3.40	0.05	9.12	1.06	1.31
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.7	0.2	0.2	0.2
EK055G: Ammonia as N by Discrete Anal	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	9.59	1.40	8.74	1.85	1.05
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N	14797-65-0	0.01	mg/L	0.02	0.06	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	er							
Nitrate as N	14797-55-8	0.01	mg/L	0.37	5.94	0.01	<0.01	<0.01
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.39	6.00	0.01	<0.01	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	38	12	39	14	14

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	02-Jun-2023 11:50	02-Jun-2023 12:05	02-Jun-2023 11:10	02-Jun-2023 13:05	02-Jun-2023 10:25
Compound	CAS Number		Unit	EW2302416-006	EW2302416-007	EW2302416-008	EW2302416-009	EW2302416-010
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	4.22	4.64	0.68	4.54	2.26

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ing date / time	02-Jun-2023 10:45	02-Jun-2023 09:25	02-Jun-2023 10:25	
Compound	CAS Number	LOR	Unit	EW2302416-011	EW2302416-012	EW2302416-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	7.2	7.3	6.8	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	2550	1580	511	
EA116: Temperature							
Temperature		0.5	°C	22.6	19.2	20.7	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	854	424	268	
Total Alkalinity as CaCO3		1	mg/L	854	424	268	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	114	224	<10	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	353	183	16	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	125	87	61	
Potassium	7440-09-7	1	mg/L	16	18	10	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.473	0.067	0.068	
Iron	7439-89-6	0.05	mg/L	0.76	0.96	1.33	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	0.8	0.2	
EK055G: Ammonia as N by Discrete Ana	alyser						
Ammonia as N	7664-41-7	0.01	mg/L	3.60	4.11	1.06	
EK057G: Nitrite as N by Discrete Analys	ser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Analy	ser				· · · · · · · · · · · · · · · · · · ·		
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	38	26	14	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Samplii	ng date / time	02-Jun-2023 10:45	02-Jun-2023 09:25	02-Jun-2023 10:25	
Compound	CAS Number LOR		Unit	EW2302416-011	EW2302416-012	EW2302416-013	
				Result	Result	Result	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	3.01	2.40	2.26	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CHAIN OF CUSTODY ALS Laboratory: please tick ->

CJ Sydney. 277 Woodpark Rd. Smithfield NSW 2176 Ph: 02 8784 8555 Etsamples.sydney@alsenviro.com C Newcastle: 5 Rosegum Rd, Warabrook NSW 2304

 Brisbane: 32 Shand St. Stafford OLD 4953 Ph:07 3243 7222 Eisamples.brisbane@alsenviro.com C Townsville: 14-15 Desma Ct Boble OI D 4818 Ph:02 4968 9433 E:samples.newcastle@alsenviro.com Ph:07 4796 0600 E: townsville.enviro.menta@alsenviro.com

C Melbourne: 2-4 Westall Rd. Springvale VIC 3171 Ph:03 8549 9600 E: samples melbourna@alserviro.com Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph: 08 8359 0890 Eaclelaide@alsenviro.com

El Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E' samples.parth@alsenviro.com C Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

...

CLIENT: OFFICE:	Shellharbour City Council 41 Burelli St WOLLONGONG NSW 2500	TURNAROUND REQUIREMEN (Standard TAT may be longer for some e.g Ultra Trace Organics)	TS: □ Standard TAT (List due date): e tests □ Non Standard or urgent TAT (List date):	FOR LABORATORY USE ONLY Custody Seal Inter?	Circles	
PROJECT:	Dunmore Quarterly Surface Waters EPL	ALS QUOTE NO.: WO/030/19	TENDER	COC SEQUENCE NUMBER (Circle)	Free Ice / fm2ph Tok bricks present up recent?	IN TO NA
ORDER NUMBER:				COC: 1 2 3 4 5 6	7 Random Sample Temperature on Rec	eio: 👗 🥑 rc
PROJECT MANAGER	R: Ryan Stirling			OF: 1 2 3 4 5 6	7 Other comment	
SAMPLER:	DALIO/M. Sontas SAMPLE	R MOBILE:	RELINQUISHED BY:	RECEIXED BY:	RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS'	? (YES / NO) EDD FO	RMAT (or default):	R.OA LOU	Inela		
Email Reports to :				DATE/ŢIMĘ:	DATE/TIME:	DATE/TIME:
Email Invoice to :			11.6.23	1/6/23		

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC reports to:

ALS USE ONLY	SAMPLE MATRIX: Sol	E DETAILS lid(S) Water(W)		CONTAINER INFORMATIC	N	ANALY	'SIS REQUIR 9 Metals are requ	ED Includia	ng SUITES	(NB. Suite Coo pottle required) or	les must be lis Dissolved (field	sted to attract suite price)	Additional Information Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	ISS	VT-1, NT-2A (Ionic Balance)	FOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Lurbidity	4H3, NH4 & NO3	rss, TDS, TOC, Total Mn	
	SWP1 5	1/6/23 9:40	w	· · · ·		1	1	4	 ✓				Field Tests - pH, EC, DO & Temp
	SWC_2	1 11:00	w				1		1	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_UP	10:43	w				1		₹.	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_DOWN	11/10	w				1		1	1	1	1	Field Tests - pH, EC, DO & Temp
	SWC_DOWN_2	11'20	w				*		1	1	1	×	Field Tests - pH, EC, DO & Temp
	Duplicate	1 11:00	w				1		1	1	1	1	Field Tests - pH, EC, DO & Temp
								<u>.</u>	· · · · · · · · · · · · · · · · · · ·		mental ong ^{Drder Ref.} 230	Division erence 2415	
Water Container Codes: F V = VOA Viał HCI Preserved Z = Zinc Acetate Preserved	P = Unpreserved Plastic; N = Nitric Preserve ; VB = VOA Vial Sodium Bisulphate Preserve Sottle; E = EDTA Preserved Bottles: ST = Str	ed Plastic; ORC = Nitric Preserved red; VS = VOA Vial Sulfuric Preserved erile Bottle: ASS = Plastic Rag for	ORC; SH = So ved; AV = Airfre Acid Sulphate S	Tor sdlum Hydroxide/Cd Preserved; S = Sodlum ight Unpreserved Vial SG = Sulfuric Presen Solis: B = Unpreserved Ban	Hydroxide Prese ved Amber Glass	rved Plastic; ; H = HCl p	AG = Amber G reserved Plasti	Glass Unprese ic; HS = HCI	rved				ormaldehyde Preserved Glass;

ENFM204

CERTIFICATE OF ANALYSIS

Work Order	EW2302415	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 01-Jun-2023 15:14
Order number	: 147649	Date Analysis Commenced	: 01-Jun-2023
C-O-C number	:	Issue Date	: 08-Jun-2023 16:58
Sampler			Hac-MRA NAIA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		The Contraction Ale and
No. of samples received	: 6		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- It has been noted that Nitrite is greater than NOx, however this difference is within the limits of experimental variation.
- TDS by method EA-015 may bias high for sample 4 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	01-Jun-2023 09:40	01-Jun-2023 11:00	01-Jun-2023 10:45	01-Jun-2023 11:10	01-Jun-2023 11:20
Compound	CAS Number	LOR	Unit	EW2302415-001	EW2302415-002	EW2302415-003	EW2302415-004	EW2302415-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.7	7.2	7.2	7.2	7.3
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	1080	17400	18800	32600	25000
EA015: Total Dissolved Solids dried at	180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		13600	13800	26100	19200
EA025: Total Suspended Solids dried	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5	7	5	<5	<5
EA045: Turbidity								
Turbidity		0.1	NTU	1.4	8.0	7.4	4.0	5.1
EA116: Temperature								
Temperature		0.5	°C	13.4	15.0	15.4	16.9	15.9
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	431	141	139	151	144
Total Alkalinity as CaCO3		1	mg/L	431	141	139	151	144
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	39	908	968	2000	1560
ED045G: Chloride by Discrete Analyse	r							
Chloride	16887-00-6	1	mg/L	173	6870	7090	12100	9680
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	73	155	180	288	229
Magnesium	7439-95-4	1	mg/L	33	380	465	765	592
Sodium	7440-23-5	1	mg/L	156	3280	3840	6440	5000
Potassium	7440-09-7	1	mg/L	17	122	145	244	210
EG020F: Dissolved Metals by ICP-MS				2.25	0.05	0.05	0.40	0.40
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	<0.10	<0.10
EG020T: Total Metals by ICP-MS						1		
Manganese	7439-96-5	0.001	mg/L	0.116	0.074	0.074	0.052	0.055
Iron	7439-89-6	0.05	mg/L	0.16	0.88	0.79	0.34	0.53
EK040P: Fluoride by PC Titrator							•••	
Fluoride	16984-48-8	0.1	mg/L	0.3	0.6	0.7	0.9	0.8

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	01-Jun-2023 09:40	01-Jun-2023 11:00	01-Jun-2023 10:45	01-Jun-2023 11:10	01-Jun-2023 11:20
Compound	CAS Number	LOR	Unit	EW2302415-001	EW2302415-002	EW2302415-003	EW2302415-004	EW2302415-005
				Result	Result	Result	Result	Result
EK040P: Fluoride by PC Titrator - Continu	ed							
EK055G: Ammonia as N by Discrete Ana	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.96	0.29	0.20	0.69	0.28
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	0.01	mg/L	0.95	0.29	0.20	0.69	0.28
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N	14797-65-0	0.01	mg/L	0.04	0.02	0.02	0.02	0.02
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.13	0.14	0.05	0.08
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.03	0.15	0.16	0.07	0.10
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	14.3	216	223	386	308
Ø Total Cations		0.01	meq/L	13.6	185	218	364	283
Ø Ionic Balance		0.01	%	2.60	7.67	1.12	2.97	4.30
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	25	10	9	7	8
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	5.90	6.32	6.71	6.05	6.55

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	01-Jun-2023 11:00	 	
Compound	CAS Number	LOR	Unit	EW2302415-006	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.2	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	17400	 	
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	13100	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	
EA045: Turbidity						
Turbidity		0.1	NTU	8.0	 	
EA116: Temperature						
Temperature		0.5	°C	15.0	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	141	 	
Total Alkalinity as CaCO3		1	mg/L	141	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	915	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	6790	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	172	 	
Magnesium	7439-95-4	1	mg/L	435	 	
Sodium	7440-23-5	1	mg/L	3650	 	
Potassium	7440-09-7	1	mg/L	140	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.077	 	
Iron	7439-89-6	0.05	mg/L	0.93	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.6	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	01-Jun-2023 11:00	 	
Compound	CAS Number	LOR	Unit	EW2302415-006	 	
				Result	 	
EK055G: Ammonia as N by Discrete Anal	yser					
Ammonia as N	7664-41-7	0.01	mg/L	0.32	 	
EK055G-NH4: Ammonium as N by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.32	 	
EK057G: Nitrite as N by Discrete Analyse	ə r					
Nitrite as N	14797-65-0	0.01	mg/L	0.03	 	
EK058G: Nitrate as N by Discrete Analys	er					
Nitrate as N	14797-55-8	0.01	mg/L	0.11	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.14	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	213	 	
Ø Total Cations		0.01	meq/L	207	 	
ø lonic Balance		0.01	%	1.59	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	8	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	6.32	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

Sydney: 277 Woodpark Rd. Smithfield NSW 2176
 Ph: 02 8784 8555 E.samptes.sydney@alsenviro.com
 Ph: 02 966 9433 E.samptes.rev.astrock NSW 2304
 Ph: 02 966 9433 E.samptes.rev.astrockenalserviro.com
 Ph: 02 966 9433 E.samptes.rev.astrockenalserviro.com

Brisbane 32 Shand St. Stafford QLD 4053
 Ph07 3245 7222 Esamples.brisbane@aiserwine.com
 Townsville: 14-15 Desma Ct. Bohle QLD 4818
 Ph07 4796 0600 E: tewnsville antionmental@atemvine.com

Melbourne: 2-4 Westall Rd, Springvale VIC 3171
Ph:03 8849 9600 E. samples melbourne@aleenviro.com
 Adelaide: 2-1 Burna Rd, Pooraka SA 5095
Ph:08 5359 0290 Eadelaide@aleenviro.com

El Perth. 10 Hod Way, Maiaga WA 6090 Ph: 08 9209 7655 E samplas,perth@alsonwiro.com El Laurceston: 27 Wellington St, Laurcestor TAS 7250 Ph: 03 8371 2156 E: laurcestor@alsonwiro.com

CLIENT:	Shellharbour City Council		TURNAR	DUND REQUIREMENTS : Standard TAT (Lis	t due date)	:			FOR LABOR	ATORY USE	ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TA e.g., Ultra Tr	AT may be longer for some tests ace Organics) Non Standard or u	rgent TAT (List due date)):		Custody Seel M	tact?	Cres No NA
PROJECT:	Testing	SWP01 Overflow full	ALS QUO	TE NO.: WO/030/19 TENDER			COC SEQU	ENCE NUMBER (Circle) Free ice Afrozen receipt?	i ice bricks presi	nt upon Yes No N/A
ORDER NUMBER:						COC:	1 2	3 4 5	6 7 Random Sample	e Temperature d	n Receipt. 🥌 to
PROJECT MANAGER:	Joel Culton					OF:	1 2	3 4 5	6 7 Other comment		52
SAMPLER: Michae	el Santas	SAMPLER N	IOBILE: C	403530 891 RELINQUISHED BY:		REC	EIVED BY:		RELINQUISHED BY	Y:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defau	10: Michael San	hon .	4	net	G			
Email Reports to :			-	DATE/TIMÉ:	-	DATE			DATE/TIME:		DATE/TIME:
Email Invoice to :				pi-05-23		<u>36</u>	1/5,	123		_	
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to	:								÷ .
ALS USE ONLY	SAMPLE MATRIX: So	E DETAILS lid(S) Water(W)		CONTAINER INFORMATION	ANALY	YSIS REQUIR	RED includir	g SUITES (NB. Si al (unfiltered bottle req	uite Codes must be listed to attra uired) or Dissolved (field filtered bott	act suite price) tle required).	Additional Information
	SAMDLE ID		MATDIX	TYPE & PRESERVATIVE TOTAL			43, Total Mn	d Total Fe			Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SAMPLEID	DATE / TIME	MAIRIX	(refer to codes below) BOTTLES	TSS	NT-1, NT-2A (Ionic Balance	TOC, NT-4, N	Dissolved and		-	
	SWP1	1.5-23 12:47	w		1	1	*	1			Field Tests - pH, EC, DO & Temp
:											
						~			Environme Wollongor Work Ord EW#	ental Div ng der Refere 2301	nce 940
				· · ·							
										2253125	
Water Container Codes: 1	P = Unpreserved Plastic; N = Nitric Preserve	ad Plastic; CRC = Nitric Preserved	1 ORC; SH = 1	10 Sodium Hydroxide/Cd Preserved, S = Sodium Hydroxide Pres	erved Plastic	; AG = Amber G	Blass Unprese	ved; AP - Airfreight	Unpreserved Plastic		

V = VOA Vial HCI Preserved VB = VOA Vial Solum Bisulphate Preserved; VS = VOA Vial Solum Bisulphate Preserved; VS = VOA Vial Solum Creserved; VS = VOA Vial Solution Creserved;

CERTIFICATE OF ANALYSIS

Work Order	EW2301940	Page	: 1 of 5
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	·	Telephone	: +61 2 4225 3125
Project	: Dunmore Surface Water SWP01 Overflow	Date Samples Received	: 01-May-2023 13:38
Order number	: 147649	Date Analysis Commenced	: 01-May-2023
C-O-C number	:	Issue Date	08-May-2023 10:48
Sampler	: Michael Santos		HALA NALA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		The Contraction of the second
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Sample site SWP1 was not discharging at time of sampling.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)	Sample ID			SWP1 Point 1	 	
		Sampli	ng date / time	01-May-2023 12:47	 	
Compound	CAS Number	LOR	Unit	EW2301940-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.6	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	1240	 	
EA015: Total Dissolved Solids dried at	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	654	 	
EA025: Total Suspended Solids dried a	t 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	9	 	
EA045: Turbidity						
Turbidity		0.1	NTU	4.5	 	
EA116: Temperature						
Temperature		0.1	°C	19.5	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	354	 	
Total Alkalinity as CaCO3		1	mg/L	354	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	43	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	168	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	59	 	
Magnesium	7439-95-4	1	mg/L	27	 	
Sodium	7440-23-5	1	mg/L	135	 	
Potassium	7440-09-7	1	mg/L	14	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	0.06	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.184	 	
Iron	7439-89-6	0.05	mg/L	0.32	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Samplii	ng date / time	01-May-2023 12:47	 	
Compound	CAS Number	LOR	Unit	EW2301940-001	 	
				Result	 	
EK055G: Ammonia as N by Discrete Analy	yser					
Ammonia as N	7664-41-7	0.01	mg/L	0.04	 	
EK055G-NH4: Ammonium as N by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.04	 	
EK057G: Nitrite as N by Discrete Analyse	ə r					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	er					
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	oy Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	12.7	 	
Ø Total Cations		0.01	meq/L	11.4	 	
Ø Ionic Balance		0.01	%	5.44	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	281	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	6.77	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

		11102 Hots 6406 Lisan	12 ออการสองเฮเซ	aiserioro com P1:07 4796 060	のた: townsville.environmantal愛alce	with com	Ph: 08 8359 080	0 E:adalaida@)alsenviro.co:	<i>α</i> .	Ph. 03 6331	2158 E: launo	estori@alsenv	iro com
ENT:	Shellharbour City Council		TURNAR	OUND REQUIREMENTS :	Standard TAT (Lis	t due date):				FOR	LABORAT	ORYUSE	NLY (Circle)
	41 Burelli St WOLLONGONG NSW	2500	(Standard T e.g., Ultra T	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics) Non Standard or urgent TAT (List due date):							Cusp	ody Seal Inte	*2	
	Dunmore Quarterly Leachate	······	ALS QUO	DTE NO.: WO	/030/19 TENDER			COC SEQU	ENCE NUM	BER (Circle) Free	lce / ficzen ic	a bricka pres	entropon 🖌 No
ER NUMBER:		······		· · · · · · · · · · · · · · · · · · ·			coc:	1 2	34	56	7 Rand	on om Semple T	enperature :	n Revent 🖵 🖌 🖓
JECT MANAGER:	Ryan Stirling	~ ~ ~		· · · · · · · · · · · · · · · · · · ·			OF:	1 2	34	56	7 Othe	omment		4.5
	DALDIM	. San LeSAMPLER	R MOBILE:		RELINQUISHED BY:		RECI	IVED BY:	/		RELINQUI	SHED BY:		RECEIVED BY:
Reports to :	(TES / NU)	EDD FOR	MAT (or defau	ult):	- 1 - I Jack	- 1.2.		It	ret	9				
Invoice to							DATE	ZTIME:	1 .	~ ~	DATE/TIM	E: ·		DATE/TIME:
					1.6.23		_		6.	<u> </u>				
MENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports t	0:											
LS USE ONLY	SAMPLI MATRIX: So	E DETAILS lid(S) Water(W)		CONTAINER IN	IFORMATION	ANALY Whe	SIS REQUIRI	ED includin	g SUITES	(NB. Suite Coo	les must be lis Dissolved (field	sted to attract	Suite price)	Additional Information
				· · · · · · · · · · · · · · · · · · ·			" ¥		ų	,				Comments on likely contaminant levels, dilu or samples requiring specific QC analysis et
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes bel	ATIVE TOTAL ow) BOTTLES	mmonia	IT-2A (Alk b4, Cl, Fl) Itered Ca,	2	otal Fe & M	14 (NO2, 03)		s		
	Leachate Storage Tank - LP1	1.6.23 12:4	ŵ.	- <u>,</u>		₹	Z ĭő iĽ ✓		▲ Te	E¥ ✓		4		Field Tests - DH EC Tomp & r
· •	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	·									· · · · · · · · · · · · · · · · · · ·
										-				
		-					<u>+</u>						·	
										<u> </u>				
			_											
				-						- En				
										<u> </u>	ronme	ntal Div		
			++	<u> </u>					_	We	ongong	1 - 1	nsio i	
										F	NOrder	Referen	Ce	
										_	* V ZC	3024	111	
		_										_	• 7	
			+	<u></u>		×					8448	, Kite P	H an	
											107 Å .	(i) e	1111	
											19 H I	15	1	· · · · · · · · · · · · · · · · · · ·
										elephon	· ••••• 7 • ••	FY	//	
			┼╼╌┼				<u> </u>			: ownone : 0	2 42253125		91 1	
			┼──┼-							<u> </u>				
									i					
						<u>.</u>								
					10									

CERTIFICATE OF ANALYSIS

Work Order	: EW2302414	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 01-Jun-2023 15:16
Order number	: 147649	Date Analysis Commenced	: 01-Jun-2023
C-O-C number	:	Issue Date	: 07-Jun-2023 18:50
Sampler	: Michael Santos, Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		The Contraction of the second
No. of samples received	: 1		Accreditation No. 825
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate due to sample matrix
- EK057/EK059G:Nitrite and NOx results confirmed by re analysis.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	01-Jun-2023 12:40	 	
Compound	CAS Number	LOR	Unit	EW2302414-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	9.3	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	7380	 	
EA015: Total Dissolved Solids dried at 18	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5290	 	
EA116: Temperature						
Temperature		0.1	°C	13.8	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	946	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1840	 	
Total Alkalinity as CaCO3		1	mg/L	2780	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<50	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1810	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	39	 	
Potassium	7440-09-7	1	mg/L	375	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.096	 	
Iron	7439-89-6	0.05	mg/L	1.29	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	
EK055G: Ammonia as N by Discrete Ana	lyser					
Ammonia as N	7664-41-7	0.01	mg/L	344	 	
EK057G: Nitrite as N by Discrete Analys	er					
Nitrite as N	14797-65-0	0.01	mg/L	6.96	 	
EK058G: Nitrate as N by Discrete Analys	ser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	

Sub-Matrix: WATER (Matrix: WATER)		Sampli	Sample ID	Leachate Storage Tank LP1	 	
		Campin			 	
Compound	CAS Number	LOR	Unit	EW2302414-001	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	y Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	1.25	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	407	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	6.22	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	60.0	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

Appendix E: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples – Quarter 4

 CHAIN OF CUSTODY
 Image: Syddin Phil 02 B

 ALS Laboratory: please tick ->
 Image: New of the Phil 02 B

 El Sydney, 277 Wootpark Rd, Smithlish NSW 2178
 Di Briabane, 32 Shånd St, Stafford QLD 4053
 Ph.02 4784 A555 Examples sydney@aldenvind com
 El Newcastlic's Rosegum Rd, Wargporcek NSW 2304
 Commaville: 14-15 Desma CL, Bohle QLD 4919
 Ph.02 4468 (2433 Examples newcastlingBalenvino.com
 Ph.02 4468 (2433 Examples newcastlingBalenvino.com

Molbourne: 2-4 Westall Rd. Spring vale VIC 3171
Ph:03 8513 9600 E. samples melbournergausenviro.com
 Adelaide: 2-4 Burns Rd, Pocraka SA 5095
Ph:08 8550 0690 Sacretaergateerwirb com

Perth 10 Hod Way, Malaga WA 6000
 Ph: 08 9209 7655 E: samples: parth@alsenvice.com
 Cl. Launceston: 27 Wellington St. Launceston: TAS 7250
 Ph: 03 6331 2156 E: launceston@alsenvice.com

.

122

	Shellharbour City Council			TURNAS		CI Steed-									
OFFICE:	41 Burelli St WOLLONGONG N	ISW 2500		(Standard	TAT may be longer for some tests	Standard Non Star	i IAI (List	due date):	iet due data	۰.			FORI	ABORATORY USE (
PROJECT:	Dunmore Quarterly Ground W	aters EPL		ALS QU	Trace Organics) OTE NO.: WO/03	0/19 TENDER			ist due date	COC SEQ		3ER (Circle	Freefo	y Seel naad. 9/ frozen ice bricke prese	nt upon
ORDER NUMBER:			•	-					coc	1 2	3 4	5 6	7 Randor	n Sample Temperature o	n Receipt
PROJECT MANAGER:	Ryan Stirling								OF:	1 2	34	56	7 Other c	omment.	56
SAMPLER: Pol	sert Oak	-10	SAMPLER M	OBILE:			ED BY:	\sim	REC	EIVED BY:			RELINQUIS	HED BY:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)		EDD FORMA	T (or defa	ult):	KODEr	1	Jer	· · · · +	thet	9	:		• a .	
Email Invoice to :					· · · · · · · · · · · · · · · · · · ·		122		DAT	E/TIME:	27		DATE/TIME:		DATE/TIME:
		OSAL ·	CC reports to:		·	<u>'/ '</u>				1/4	63				
			oc reports to.		······					·					7
ALS USE ONLY	SAN MATRIX	MPLE DETAI	ILS ater(W)		CONTAINER INFO	ORMATION		ANALY	SIS REQUIR	ED includi	ng SUITES	NB. Suite Co	dəs must bə liste	ed to attract suite price)	Additional Information
			. ,					Whei	re Metals are req	luired, specify T	otal (unfiltered b	ottle required) o	Dissolved (field fil	lered bottle required).	Commoste en likely anteninget la start d'atte
					•				× °		е С			-	or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID	ļ	DATE / TIME	MATRIX	TYPE & PRESERVATI (refer to codes below	NE ≬ 'B	TOTAL OTTLES	nia	Q E		ved	NO2	<u>ہ د</u>		
5 m								ŭ	04, C	g	n ssol	31	and t		
· · · · · · · · · · · · · · · · · · ·	BH1C i			w				<u>ح</u>	ZŐE	F /	<u>ā</u> z	zž	<u>, м</u> щ		
	ВНЗ	<u>· y · 2</u>	3 -1-13	w					+	-		•	<u> </u>		Field Tests - pH, EC, Temp & SWL
			13:05						+	· ·		•			Field Tests - pH, EC, Temp & SWL
	BH4		12:20	w	·						-	-			Field Tests - pH, EC, Temp & SWL
	BH9		8:40	w				1	1	1	4	1			Field Tests - pH, EC, Temp & SWL
	BH12R		11:15	w				1	-	1	1	1	•		Field Tests - pH, EC, Temp & SWL
· · ·	BH13		11:35	W			ĝs.	~	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH14		11:55	W			1.2	1	11	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH15		10:45	w				_ ✓	1	×	1	1			Field Tests - pH, EC, Temp & SWL
*	BH19R		12:45	w			· ••	1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH18		8:05	w				1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH21		10:20	_ Env	vironmental Divisio	יי כו	1	*	4	1	1	1		_	Field Tests - pH, EC, Temp & SWL
	BH22		9:55	Wo	llongong			1	1	1	1	4			Field Tests - pH, EC, Temp & SWL
	Duplicate		8:35		FW23038	54		£	1	19 1	1	1			Field Tests - pH, EC, Temp & SWL
. <u></u>	Triplicate	Y	8:05	_								х.	1		
				-											
				-			1	<u>в.</u> 2							· · · · · · · · · · · · · · · · · · ·
	- 'W''														
				Tele	phone : 02 42253125		10								
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Pre	served Plastic;	ORC = Nitric Preserved				xide Pres	erved Plast	ic; AG = Ambe	or Glass Unpr	eserved; AP -	 Airfreight Un:	reserved Plastic	,	

V = VOA Vial HCI Preserved, VS = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved, Sector Voi SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetabe Preserved Bottle; E = EDTA Preserved Bottle; ST = Stenite Bottle; ST = Stenite Bottle; ASS = Plastic Bag for Acid Sulphate Scile; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	EW2303854	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 01-Sep-2023 14:03
Order number	: 156810	Date Analysis Commenced	: 01-Sep-2023
C-O-C number	:	Issue Date	13-Sep-2023 10:20
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS		The Calut
No. of samples received	: 14		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate on sample no.1 due to sample matrix.
- EK057G: LOR raised for Nitrite on sample no.12 due to sample matrix.
- EK059G: LOR raised for NOx on sample 12 due to sample matrix.
- EK058G: LOR raised for Nitrate on sample 12 due to sample matrix.
- EK059G: LOR raised for NOx due to sample matrix.
- EK057G/EK059G: It has been noted that Nitrite is greater than NOx on sample 8, however this difference is confirmed by re-analysis.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampl	ng date / time	01-Sep-2023 09:15	01-Sep-2023 13:05	01-Sep-2023 12:20	01-Sep-2023 08:40	01-Sep-2023 11:15
Compound	CAS Number	LOR	Unit	EW2303854-001	EW2303854-002	EW2303854-003	EW2303854-004	EW2303854-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.9	7.3	7.3	7.1	6.8
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	7610	1650	880	3760	1610
EA116: Temperature								
Temperature		0.5	°C	23.9	17.8	18.4	17.7	20.6
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2760	483	381	1700	516
Total Alkalinity as CaCO3		1	mg/L	2760	483	381	1700	516
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	210	115	167	184
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	1110	260	55	548	223
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	135	137	132	216	183
Potassium	7440-09-7	1	mg/L	242	31	20	84	27
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.116	0.214	0.118	0.558	0.539
Iron	7439-89-6	0.05	mg/L	9.04	2.90	3.08	2.45	9.62
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.1	0.1	0.4	0.2
EK055G: Ammonia as N by Discrete Ana	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	314	29.2	1.68	122	3.37
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.03	<0.01	<0.01	0.01
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	0.08	0.14	0.01	0.15
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.10	0.11	0.14	0.01	0.16
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	222	22	11	58	21

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	01-Sep-2023 09:15	01-Sep-2023 13:05	01-Sep-2023 12:20	01-Sep-2023 08:40	01-Sep-2023 11:15
Compound	CAS Number	LOR	Unit	EW2303854-001	EW2303854-002	EW2303854-003	EW2303854-004	EW2303854-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	3.25	3.13	4.40	3.25	4.38

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ing date / time	01-Sep-2023 11:35	01-Sep-2023 11:55	01-Sep-2023 10:45	01-Sep-2023 12:40	01-Sep-2023 08:05
Compound	CAS Number	LOR	Unit	EW2303854-006	EW2303854-007	EW2303854-008	EW2303854-009	EW2303854-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.7	6.8	7.0	7.3	6.6
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	2210	1020	2180	765	470
EA116: Temperature								
Temperature		0.5	°C	21.5	21.0	14.3	18.1	18.6
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	872	563	519	358	283
Total Alkalinity as CaCO3		1	mg/L	872	563	519	358	283
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	93	37	391	58	4
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	330	36	459	48	13
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	219	154	133	104	70
Potassium	7440-09-7	1	mg/L	29	16	153	42	9
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.448	0.140	0.300	0.080	0.241
Iron	7439-89-6	0.05	mg/L	3.34	0.15	10.4	0.99	2.43
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.5	0.2	0.1	0.2
EK055G: Ammonia as N by Discrete Anal	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	8.64	1.42	6.24	3.05	1.44
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.03	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	4.43	1.03	<0.01	0.06	<0.01
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	4.43	1.03	0.01	0.06	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	36	12	37	13	14

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	01-Sep-2023 11:35	01-Sep-2023 11:55	01-Sep-2023 10:45	01-Sep-2023 12:40	01-Sep-2023 08:05
Compound	CAS Number	LOR	Unit	EW2303854-006	EW2303854-007	EW2303854-008	EW2303854-009	EW2303854-010
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	4.39	4.83	0.89	4.56	2.28

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	01-Sep-2023 10:20	01-Sep-2023 09:55	01-Sep-2023 08:05	
Compound C/	AS Number	LOR	Unit	EW2303854-011	EW2303854-012	EW2303854-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	6.9	6.6	6.6	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	μS/cm	2310	1470	470	
EA116: Temperature							
Temperature		0.5	°C	20.8	17.5	18.6	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3 DN	NO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	783	428	279	
Total Alkalinity as CaCO3		1	mg/L	783	428	279	
ED041G: Sulfate (Turbidimetric) as SO4 2- by	DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	183	326	4	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	328	147	13	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	196	159	71	
Potassium	7440-09-7	1	mg/L	28	16	9	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.231	0.279	0.242	
Iron	7439-89-6	0.05	mg/L	0.16	25.9	2.46	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.3	0.2	
EK055G: Ammonia as N by Discrete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	1.92	5.14	1.31	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.06	<0.10	<0.01	
EK058G: Nitrate as N by Discrete Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	23.7	<0.10	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx) by Di	iscrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	23.8	<0.10	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	29	33	15	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Samplii	ng date / time	01-Sep-2023 10:20	01-Sep-2023 09:55	01-Sep-2023 08:05	
Compound	CAS Number	ber LOR Unit		EW2303854-011	EW2303854-012	EW2303854-013	
				Result	Result	Result	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	3.15	2.42	2.38	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

ALS

CHAIN OF CUSTODY □ Sydney: 277 Whoosperk Rd, Smithfield NSW 2176 Ph: 02 8734 8555 E.camples.sydney@alsenvire.com ALS Laboratory: please tick → □ Newcastle: 5 Rosegum Rd, Wardbrock NSW 2304 Ph: 20 4059 4/35 E.camples.triverastle@alsenvire.com D: Newcastle: 5 Rosegum Rd, Wardbrock NSW 2304 Ph: 20 4059 4/35 E.camples.triverastle@alsenvire.com

Sydney 277 Whouperk Rd, Smithfield NSW 2176
 Brisbane: 32 Shand St Stafford QLD 4053
 Ph. 02 8754 8555 Examples sydney@alservire.com
 Newcastle: 5 Rosegum Rd, Warathrock NSW 2304
 Townsville: 14-15 Desrna Ct, Bohle QLD 4818
 Ph. 02 4969 3433 Examples:terworable@alservire.com
 Townsville: 14-15 Desrna Ct, Bohle QLD 4818
 Ph. 02 4969 3433 Examples:terworable@alservire.com

Melbourne, 2-4 Westall Rd. Splingrafe VIC 3171
 Ph/33 8549 9800 E: camples melbourne@alsenviro.com
 Adetaide: 2-1 Burna Rd. Poorata SA 5095
 Ph/ 08 6350 0930 Elacteralde@alsenviro.com

El Porth: 10 Hod Way, Malaga WA 6060 Phi06 9209 7655 E, samples perthiĝates tviro.com El Launceston: 27 Wellington St, Launceston TAS 7260 Ph: 03 6331 2158 E: launceston@alserviro.com

CLIENT:	Shellharbour City Council		TURNARO	UND REQUIREMENTS :	Standa	ard TAT (List	due date):					FOR	LABORAT	ORY USE O	NLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TAT e.g., Ultra Tra	F may be longer for some tests ce Organics)	🛛 Non Si	tandard or urg	jent TAT (L	ist due date)	15			Custo	xly Seal Intec	n	Yaa No Nia
PROJECT:	Dunmore Quarterly Leachate		ALS QUOT	E NO.: WO/0	30/19 TENDI	ER			COC SEQU	ENCE NUME	ER (Circle)	E fee recei	ice / frozen ic p17	e blicks prese	ntupon (Yes) Na WA
ORDER NUMBER:							-	coc:	1 2	34	56	7 Rand	om Sample T	emperature or	Receipt S / C
PROJECT MANAGER:	Ryan Stirling							OF:	1 2	3 4	56	7 Other	comment		70
SAMPLER:	obert Dal	SAMPLER N	IOBILE:		RELINQUE	SHED BY:		RECI	EIVED BY:			RELINQUI	SHED BY:	÷	RECEIVED BY:
COC emailed to ALS? (YES / NO)	EDD FORMA	AT (or default	:):	166	ert l	24-	-	An	J.A.					
Email Reports to :					DATE/TIME	: 		DATE	E/TIME:			DATE/TIM	E: *		DATE/TIME:
Email Invoice to :					5.	9.23	>		51	71.	23				
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to:			•										
ALS USE ONLY	SAMPLI MATRIX: So	E DETAILS lid(S) Water(W)		CONTAINER INF	ORMATION		ANALY:	SIS REQUIR re Metals are requ	ED includir Jired, specify To	ng SUITES (stal (unfiltered b	NB. Suite Co ottle required) or	des must be lis Dissolved (field	sted to attract I filtered bottle re	suite price) :quired).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAI (refer to codes belo	rive w)	TOTAL BOTTLES	Ammonia	NT-2A (Aika, So4, Ct, Fl) Filtered Ca, K	TOC	Total Fe & Mn	NT-4 (NO2, NO3)				Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	Leachate Storage Tank - LP1	5.9.23. 10.	5 w				1	1	4	1	1				Field Tests - pH, EC, Temp & DO
		12.71	21												
		- 51	4,9												
									· · · ·				ļ		
												1			
											Envi	ronmer	ntal Div	is ion	
											W W	ork Orde	∮ r Refere	nce	
							· ·		•		E	:W2	303	859	
											-				
											-				
													WHY.		<u>ا</u> ــــــــــــــــــــــــــــــــــــ
															· · · · · · · · · · · · · · · · · · ·
4											- Teleph	one : 02 422	253125		
					TOTAL	10									
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preser	ved Plastic; ORC = Nitric Preserv	ed ORC; SH =	Sodium Hydroxide/Cd Preserve freight Lingresenved Viel SG = 1	d; S = Sodium Sulfuric Preser	Hydroxide Pre	eserved Plas	tic; AG = Amb	 er Glass Un pr leetic: HS = I	eserved; AP	Airfreight Un	preserved Plas	stic	ed Plastic: E =	Formaldahuda Prasaruad Glass

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Vial SG = Sulfuric Preserved Bastic; HS = HCI preserved Plastic; HS = HCI preserved Bastic; HS = HCI preserved Plastic; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Vial SG = Sulfuric Preserved Bastic; HS = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Bastic; B = Unpreserved Bastic; HS = HCI preserved Bastic; SP = Sulfuric Preserved Plastic; Bastic Bastic; astic; Bastic Bastic; astic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Bastic Bastic; Ba

CERTIFICATE OF ANALYSIS

Work Order	EW2303859	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 05-Sep-2023 13:52
Order number	: 156810	Date Analysis Commenced	: 05-Sep-2023
C-O-C number	:	Issue Date	11-Sep-2023 19:56
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		The Contraction of the second
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
 - LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate due to sample matrix
- EK059G: LOR raised for NOx due to sample matrix.
- It has been noted that Nitrite is greater than NOx, however these results have been confirmed by reanalysis
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	05-Sep-2023 10:10	 	
Compound	CAS Number	LOR	Unit	EW2303859-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.9	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non		1	µS/cm	8180	 	
Compensated)						
EA015: Total Dissolved Solids dried at 18	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5280	 	
EA116: Temperature						
Temperature		0.5	°C	19.9	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	743	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1970	 	
Total Alkalinity as CaCO3		1	mg/L	2710	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<100	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	2030	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	45	 	
Potassium	7440-09-7	1	mg/L	349	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.108	 	
Iron	7439-89-6	0.05	mg/L	1.67	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discrete Ana	lyser					
Ammonia as N	7664-41-7	0.01	mg/L	391	 	
EK057G: Nitrite as N by Discrete Analys	er					
Nitrite as N	14797-65-0	0.01	mg/L	12.2	 	
EK058G: Nitrate as N by Discrete Analys	ser				·	
Nitrate as N	14797-55-8	0.01	mg/L	<2.00	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	05-Sep-2023 10:10	 	
Compound	CAS Number	LOR	Unit	EW2303859-001	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx) t	oy Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<2.00	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	405	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	5.25	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	60.3	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CHAIN OF CUSTODY ALS Laboratory: please tick →

Sydney: 277 Woodpark Rd. Smithfield NSW 2176
Ph. 02 8784 8555 Eisamples.sydney@alsenviro.com

D Brisbane: 32 Shand St. Statford QLD 4053 Ph:07 3243 7222 E:samples brisbane@alsenviro.com Newcastle: 5 Rosegum R4, Warabrook NSW 2304
 Townsville: 14-15 Desma CL Bohle CLD 4818
 Ph:02 4968 9433 Eisamples newcastle@alserwino.com
 Ph:07 4796 0600 E: towrsville environmenta@alserwino.com

 Melbourne: 2-4 Westail Rd. Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenviro.com D Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

Cl. Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E' samples.perth@alsenviro.com CI Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	Shellharbour City Council	TURNAROUND REQUIREMENT	S: Standard TAT (List due date):		FOR LABORATORY USE ONLY (Circle)			
OFFICE:	41 Burelli St WOLLONGONG NSW 2500	(Standard TAT may be longer for some e.g Ultra Trace Organics)	tests D Non Standard or urgent TAT (List	due date):	Custoriy Seal Intact?	Yes No 👬		
PROJECT:	Dunmore Quarterly Surface Waters EPL	ALS QUOTE NO.: WO/030/19	TENDER	COC SEQUENCE NUMBER (Circle) Free ice / Frozen ice bricks present up			
ORDER NUMBER:	:			coc: 1 2 3 4 5 6	7 Rendom Sample Temperature on Rec	AR COT		
PROJECT MANAG	BER: Ryan Stirling			OF: 1 2 3 4 5 6	7 Other continent	10		
SAMPLER:	Obert Dalis	SAMPLER MOBILE:	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:		
COC emailed to AL	LS? (YES / NO)	EDD FORMAT (or default):	Bebert Dation	Anoly				
Email Reports to :	:		DATE/TIME:		DATE/TIME:	DATE/TIME:		
Email Invoice to :		· · · · ·	5.9.17	5/9/23				

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC reports to:

ALS USE ONLY	SAMP MATRIX: S	LE DETAILS solid(S) Wate	S er(W)		CONTAINER INFORMATION AI			'SIS REQUIR e Metals are requ	RED includio	uite price) uired).	Additional Information				
LAB ID	SAMPLE ID	DA	NTE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	TSS	NT-1, NT-2A (Ionic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NO3	TSS, TDS, TOC, Total Mn		Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SWP1	3.9.2	3 9:3=	s w			1	1	1	1					Field Tests - pH, EC, DO & Temp
	SWC_2	1	8:4:	s w						1	1	1	1		Field Tests - pH, EC, DO & Temp
	SWC_UP		7:5	w د				1		1	1	4	1		Field Tests - pH, EC, DO & Temp
	SWC_DOWN		8 K	w C				1		1	1	1	1		Field Tests - pH, EC, DO & Temp
	SWC_DOWN_2		8:20	> w				1		1	1	1	×		Field Tests - pH, EC, DO & Temp
	Duplicate	ł	· 8:42	w				1		1	1	~	1		Field Tests - pH, EC, DO & Temp
					· · · · ·				•	Envi Woll W	ronmen ongong ork Order W2:	Referen	ision 862		
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preser	Ved Plastic; Of	RC = Nitric Preserve	d ORC; SH =	TOT Sodium Hydroxide/Cd Preserved; S = Sodium	Als 10	rved Plastic:	AG = Amber G	jass Unprese						
V = VOA Vial HCI Preserve Z = Zinc Acetate Preserve	ed; VB = VOA Vial Sodium Bisulphate Prese d Bottle; E = EDTA Preserved Bottles; ST = 3	rved; VS = VO/ Sterile Bottle; /	A Vial Sulfuric Prese ASS = Plastic Bag fo	rved; AV = Air r Acid Sulphat	reight Unpreserved Vial SG = Sulfuric Preser	ved Amber Glass	; H = HCIp	reserved Plasti	ic; HS = HCI	Telepho	ne : 02.4226	3125		i = For	maldehyde Preserved Glass;

CERTIFICATE OF ANALYSIS

Work Order	EW2303862	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 05-Sep-2023 13:42
Order number	: 156810	Date Analysis Commenced	: 05-Sep-2023
C-O-C number	:	Issue Date	12-Sep-2023 10:55
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		The Contraction
No. of samples received	: 6		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EG020: LOR's have been raised due to matrix interference.
- TDS by method EA-015 may bias high for all samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	05-Sep-2023 09:35	05-Sep-2023 08:45	05-Sep-2023 07:50	05-Sep-2023 08:10	05-Sep-2023 08:20
Compound	CAS Number	LOR	Unit	EW2303862-001	EW2303862-002	EW2303862-003	EW2303862-004	EW2303862-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.7	7.3	7.2	7.4	7.4
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	788	26800	22000	30300	18800
EA015: Total Dissolved Solids dried at	180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		21100	17800	24800	14800
EA025: Total Suspended Solids dried a	t 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5	<5	<5	<5	<5
EA045: Turbidity								
Turbidity		0.1	NTU	2.2	3.5	4.6	3.0	4.6
EA116: Temperature								
Temperature		0.5	°C	14.6	15.6	15.4	15.7	14.7
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	316	163	169	160	150
Total Alkalinity as CaCO3		1	mg/L	316	163	169	160	150
ED041G: Sulfate (Turbidimetric) as SO4	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	23	1720	922	1840	795
ED045G: Chloride by Discrete Analyser	r							
Chloride	16887-00-6	1	mg/L	145	10000	8240	11300	7170
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	58	283	253	315	214
Magnesium	7439-95-4	1	mg/L	26	726	608	843	508
Sodium	7440-23-5	1	mg/L	127	5940	5060	6970	4310
Potassium	7440-09-7	1	mg/L	18	250	190	247	165
EG020F: Dissolved Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.06	<0.10	0.08	<0.10	<0.05
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.263	0.276	0.106	0.030	0.053
Iron	7439-89-6	0.05	mg/L	0.17	<0.10	0.63	0.36	0.54
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	0.8	0.7	0.8	0.6

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	05-Sep-2023 09:35	05-Sep-2023 08:45	05-Sep-2023 07:50	05-Sep-2023 08:10	05-Sep-2023 08:20
Compound	CAS Number	LOR	Unit	EW2303862-001	EW2303862-002	EW2303862-003	EW2303862-004	EW2303862-005
				Result	Result	Result	Result	Result
EK040P: Fluoride by PC Titrator - Continu	ied							
EK055G: Ammonia as N by Discrete Ana	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.09	0.76	0.54	0.51	0.25
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	0.01	mg/L	0.09	0.76	0.54	0.51	0.25
EK057G: Nitrite as N by Discrete Analys	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.02	0.02	0.01	0.01
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.06	0.09	0.06	0.10
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.08	0.11	0.07	0.11
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	10.9	321	255	360	222
Ø Total Cations		0.01	meq/L	11.0	339	288	394	244
Ø Ionic Balance		0.01	%	0.62	2.65	6.01	4.55	4.80
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	20	8	8	6	7
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	4.16	4.91	5.02	5.37	6.27

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	05-Sep-2023 08:45	 	
Compound	CAS Number	LOR	Unit	EW2303862-006	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.3	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	26800	 	
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	21500	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	<5	 	
EA045: Turbidity						
Turbidity		0.1	NTU	3.6	 	
EA116: Temperature						
Temperature		0.5	°C	15.6	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	163	 	
Total Alkalinity as CaCO3		1	mg/L	163	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1610	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	10100	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	282	 	
Magnesium	7439-95-4	1	mg/L	719	 	
Sodium	7440-23-5	1	mg/L	5950	 	
Potassium	7440-09-7	1	mg/L	218	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	<0.10	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.042	 	
Iron	7439-89-6	0.05	mg/L	0.43	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.7	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	05-Sep-2023 08:45	 	
Compound	CAS Number	LOR	Unit	EW2303862-006	 	
				Result	 	
EK055G: Ammonia as N by Discrete Anal	yser					
Ammonia as N	7664-41-7	0.01	mg/L	0.76	 	
EK055G-NH4: Ammonium as N by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.76	 	
EK057G: Nitrite as N by Discrete Analyse	ər					
Nitrite as N	14797-65-0	0.01	mg/L	0.02	 	
EK058G: Nitrate as N by Discrete Analys	er					
Nitrate as N	14797-55-8	0.01	mg/L	0.06	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.08	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	322	 	
Ø Total Cations		0.01	meq/L	338	 	
ø lonic Balance		0.01	%	2.42	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	7	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	4.91	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

Appendix F:

Laboratory Chain of Custody (COC) & Certificates of Analysis

(COA) – Dust Samples. Quarters 1-4

(ALS)	CHAIN OF CUSTODY ALS Laboratory: please tick →	El Sydney: 277 Woodpark Ph: 02 8784 8555 Eisampi El Newcastie: 5 Rosegum Ph:02 4968 9433 Eisampie	Rd. Smithfield N es.sydney@alsei Rd. Warabrook s.newcastle@al-	ISW 2176 Distance: 32 3 nvfro.som Ph:07 3243 7222 8 NSW 2304 Distance: 14 seriviro.com Ph:07 4796 0600 8	Shand St, Staffo Eisamptes brisbi 4~15 Desma Ct, Ei townsville enviro	ord QLD 4053 ane@alsenviro Bohle QLD 481 ximenial@elsenvi	com Ph:0 8 Cl Io.com Ph:	Melbo 03 854 Adela 08 83	ume: 2×4 W 9-9600 E. sa ide: 2-1 Bun 59 0890 E:a	/estall Rd, amples.me ma Rd, Po delaide@ <i>c</i>	Springvale Ibourne@a ioraka SA 5 ilsenviro.co	VIC 3171 Isonviro.com 095 m	 Perth: 10 Ph: 08 9209 Caunces Ph: 03 633) Hod Way, Malaç 17655 E: samples ton: 27 Wellingto 1 2158 E: launces	ga WA 6090 s.perth@alser on St, Launces ston@alsenwr	iViro.xem ston TAS 7250 6.com
CLIENT:	Shellharbour City Council	······	TURNARO	UND REQUIREMENTS :	Standa	ard TAT (List	due date):						FO	R LABORATO	DRY USE C	INLY (Circle)
OFFICE:	Dunmore	÷.	(Standard TAT	may be longer for some tests	Non Si	tandard or urg	gent TAT (Lis	t due	date):				Cas	tody Seal Intacti	2 1 1 1	Yes No N
PROJECT:	Dunmore Dust		ALS QUOT	E NO.: WO/030/19 TEND	ER				co	C SEQUE		IBER (Circ	ie) Fre	s ice i frozen loe offi	bricks prese	ntupon . Yes No N
ORDER NUMBER:	and from the second second second second second second second second second second second second second second	,							coc: 1	2	34	5	6 7 Rar	dom Sample Te	mperature or	Recept. C
PROJECT MANAGER:	Joel Culton								OF: 1	2	34	5	6 7 Omb	er comment:	18	
SAMPLER:	shart Dok	SAMPLER N	OBILE:		RELINQUIS	SHED BY:			RECEIVE	D BY:	*		RELINQ	JISHED BY:		RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defaul	t):	125	er l	Dahm	0								
Email Reports to :						Ξ:			DATE/TIN	IE:			DATE/TI	AE:		DATE/TIME:
Email Invoice to :					i/12-	125										
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL: CC reports to										.	F			
ALS USE ONLY	SAMPL MATRIX: So	E DETAILS olid(S) Water(W)		CONTAINER INF	ORMATION		ANALYSI Where M	IS RE	QUIRED i	includin specify Tota	g SUITES	S (NB. Suite bottle required	Codes must be) or Dissolved (fi	listed to attract s ald filtered bottle re	suite price) squired).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below	'IVE #)	TOTAL BOTTLES	A04 (Ash, CM, TIS)							, k		Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	DDG1 1/	12122 9:25	AIR				1									
	DDG2	941	AIR				1									1
	DDG3	8:4	AIR				1					E	nvironm	ental Div	ision	· · ·
	DDG4	+ 8:32	AIR				1					∨	Vollongo Work Or EW	ng der Refere 2205	^{nœ} 528	
													Telephone :	02 42253125	<u> </u>	
Water Container Codes: 1 V = VOA Vial HCI Preserver	P = Unpreserved Plastic; N = Nitric Preserv d; VB = VOA Vial Sodium Bisulphate Preserv	red Plastic; ORC = Nitric Preserved ved; VS = VOA Vial Sulfuric Preser	IORC; SH = Si ved; AV = Airfre	odium Hydroxide/Cd Preserved; ight Unpreserved Vial SG = Sulf	S = Sodium Hy furic Preserved	10 droxide Preser Amber Glass;	ved Plastic; A0 H = HCI pres	G = Ar servec	nber Glass Plastic; Hi	Unpreser S = HCl p	ved; AP - A reserved S	Virfreight Unp peciation bot	reserved Plasti tle; SP = Sulfuri	c Preserved Pla	stic; F = For	maldehyde Preserved Glass;

,

CERTIFICATE OF ANALYSIS

Work Order	EW2205528	Page	: 1 of 3
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 01-Dec-2022 13:00
Order number	: 147649	Date Analysis Commenced	: 02-Dec-2022
C-O-C number	:	Issue Date	: 12-Dec-2022 18:08
Sampler	: Robert DaLio		HALA NALA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		The Annual Annua
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Zoran Grozdanovski	Laboratory Operator	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Newcastle.

- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth.
- Sample exposure period is 27 days which is outside the typical exposure period of 30 +/- 2 days as per AS3580.10.1.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Depositon Gauges.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 04/11/2022 - 01/12/2022	DDG2 04/11/2022 - 01/12/2022	DDG3 04/11/2022 - 01/12/2022	DDG4 04/11/2022 - 01/12/2022	
		Sampli	ng date / time	01-Dec-2022 00:00	01-Dec-2022 00:00	01-Dec-2022 00:00	01-Dec-2022 00:00	
Compound	CAS Number	LOR	Unit	EW2205528-001	EW2205528-002	EW2205528-003	EW2205528-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.8	0.6	1.0	1.3	
Ash Content (mg)		2	mg	12	9	16	20	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.4	0.2	0.7	0.8	
Combustible Matter (mg)		2	mg	7	4	11	13	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	1.2	0.8	1.7	2.1	
Total Insoluble Matter (mg)		2	mg	19	13	27	33	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

CHAIN OF CUSTODY

Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Ph: 02 8784 8555 E samples sydney@alsenviro.com ALS Laboratory: please tick →

Brisbane, 32 Shand St. Stafford QLD 4053 Ph:07 3243 7222 E:samples brisbarie@alseriviro.com New castle: 5 Rosogum RV. Warstrock NSW 230
 Newcastle: 5 Rosogum RV. Warstrock NSW 230
 New castle: 14-15 Cesma Ct. Bolke QLD 4818
 1 Melhourne 2-4 Westall Rd. Springvale VIC 3171 Ph.03 8549 9600 E. samples nielbourne@alsenviro.com C Adelaide: 2-1 Burma Rd. Popraka SA 5095 Ph 08 8359 0890 E.adelaide@alsenviro.com

C) Perth: 10 Hog Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples perth@alsenviro.com C Launceston: 27 Wellington St. Launceston TAS 7250 Phr 03 6331 2158 E: Jaunceston@alsonviro.com

stirling J D Calaion I NO) LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	SAMPLER M EDD FORMA : CC reports to: DETAILS ((S) Water(W)	(Standard TAT e.g. Ultra Trac ALS QUOTI OBILE: T (or default	may be longer for some tests e Organics) E NO.: WO/030/19 TENDER RELIN): DATE	IQUISHED BY: Joent To Jointe: 3.23) to the second se	due date): COC SEQUENCE NUMBER (Ci coc: 1 2 3 4 5 oF: 1 2 3 4 5 RECEIVED BY: DATE/TIME: 2/3/2 3	Cristody Seal Inract? ircle) Free Jos / frozon ko brids pre- récept? 6 7 Random Sample Temperature 6 7 Other comment RELINQUISHED BY: DATE/TIME:	Yes No Santupon Yes No Santupon Yes No Santupon Second Constraints of the second constraints of
Stirling J D D i D I NO) LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	SAMPLER M EDD FORMA : CC reports to: DETAILS (S) Water(W)	ALS QUOTI	RELIN): DATE	IQUISHED BY: Shert To TIME: 3.23)ed ; o	COC SEQUENCE NUMBER (Ci coc: 1 2 3 4 5 op: 1 2 3 4 5 RECEIVED BY: DATEITIME: 2/3/23	ircle) Free ise / forzan ice bricks pre recept? 6 7 Random San ple Temperature 6 7 Other comment RELINQUISHED BY: DATE/TIME:	RECEIVED BY:
Stirling J D CL : I NO) LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	SAMPLER M EDD FORMA : CC reports to: DETAILS ((S) Water(W)	OBILE: T (or default): DATE	iquished by: Joent To Mime: 3.23)et ;o	coc: 1 2 3 4 5 or: 1 2 3 4 5 RECEIVED BY: - - - - - DATETTIME: 2/3/23 3/23 - - -	6 7 Rancom Sample Temperature 6 7 Other comment RELINQUISHED BY: DATE/TIME:	RECEIVED BY:
Stirling + [2 aLio] I NO) LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	SAMPLER M EDD FORMA : CC reports to: DETAILS (S) Water(W)	OBILE: T (or default): Date	iquished by: Shert 5 TIME: 3.23)et ; o	of: 1 2 3 4 5 RECEIVED BY: DATE/TIME: 2/3/23	6 7 Other continent. RELINQUISHED BY: DATE/TIME:	RECEIVED BY: DATE/TIME:
ING/STORAGE OR DISPOSAL	SAMPLER M EDD FORMA : CC reports to: DETAILS ((S) Water(W)	OBILE: T (or default): Date	IQUISHED BY: Joent C MIME: 3.23)et;o	DATE/TIME: 2/3/23	RELINQUISHED BY: DATE/TIME:	RECEIVED BY: DATE/TIME:
T IZ GELE I NO) LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	EDD FORMA CC reports to: DETAILS ((S) Water(W)	T (or default): DATE	$3 \cdot 2 \cdot 3$)et;o	DATESTIME: 2/3/23	DATE/TIME:	DATE/TIME:
LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	: CC reports to: DETAILS (S) Water(W)		DATE	/TIME: <u>3 ·2−3</u>	-	2/3/23	DATE/TIME:	DATE/TIME:
LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	: CC reports to: DETAILS (S) Water(W)		,	3.23		2/3/25		
LING/STORAGE OR DISPOSAL SAMPLE MATRIX: Solid	CC reports to: DETAILS (S) Water(W)					r		
SAMPLE MATRIX: Solid	DETAILS I(S) Water(W)							
	(S) water(w)		CONTAINER INFORMA	TION	ANALYSIS	REQUIRED including SUITES (NB. Sui	ite Codes must be listed to attract suite price) Additional Information
			<u> </u>		Where Ma	tals are required, specify Total (unfiltered bottle requi	Ired) of Dissolved (read lingred bottle required).	Comments on likely contaminant levels,
								dilutions, or samples requiring specific QC analysis etc.
SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	, CM, TIS)			
:					A04 (Ash			
1	1.323 9:15	AIR			1			
j2	, 2:53	Ş AIR			1			
	aire	AIR			1		I I İ	Ι.
<u>4</u>	I GIE	AIR			-		Environmental Dir Wollongong	vision
	<u> </u>	1					Work Order Refere F\\/2200	
							LVV2000	<u> </u>
						,		
		+						ξ .
							MANTIN NI WATER A STATE	
					<u> </u>		Telephone : 02 42253125	<u> </u>
-	97 YEE DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO DO YOO							
				тота. 10				
	SAMPLE ID	SAMPLE ID DATE / TIME 1 1.3.23 9.15 2 8.35 9.25 3 9.25 9.15 4 9.15 9.15 4 9.15 9.15 9 9.25 9.15 9 9.15 9.15 9 9.15 9.15 9 9.25 9.15 9 9.15 9.15 9 9.25 9.15 9 9.25 9.15 9 9.25 9.15 9 9.25 9.15 9 9.25 9.15 9 9.25 9.15 9 9.25 9.15 9 9.25 9.15 9 9.15 9.15 9 9.15 9.15 9 9.15 9.15 9 9.15 9.15 9 9.15 9.15 9 9.15 9.15	SAMPLE ID DATE / TIME MATRIX 1 1.3.2.3 9.15 AIR 2 8.55 AIR 3 9.25 AIR 14 9.15 AIR	SAMPLE ID DATE / TIME MATRIX TYPE & PRESERVATIVE (refer to codes below) 1 1.3.2.3 Q ² .1.5 AIR 2 Q ² .555 AIR 3 Q ² .1.5 AIR 4 Q ² .1.5 AIR	SAMPLE ID DATE / TIME MATRIX TYPE & PRESERVATIVE (refer to codes below) TOTAL BOTTLES 1 1.3.2.3 Q ² .1.5 AIR 2 Q ² .2.5 AIR 3 Q ² .2.5 AIR 4 Q ² .1.5 AIR 4 Q ² .1.5 AIR 5 AIR AIR 6 AIR AIR 1 1.5.2.3 AIR 3 Q ² .2.5 AIR 4 Q ² .1.5 AIR 4 Q ² .1.5 AIR 4 Q ² .1.5 AIR 10 AIR AIR	SAMPLE ID DATE / TIME MATRIX TYPE & PRESERVATIVE (refer to codes below) TOTAL BOTTLES ST ST ST ST ST ST ST ST ST ST ST ST ST S	SAMPLE ID DATE / TIME MATRIX TYPE & PRESERVATIVE (refer to codes below) TOTAL BOTTLES Soft Soft 1 1.3.2.3 Q ² / ₂ / ₂ AIR - <	SAMPLE ID DATE / TIME MATRIX TYPE & PRESERVATIVE (refer to codes below) TOTAL BOTTLES SP Environmental Division 1 1.3.2.3 G'.I.S. AIR - - - 2 Q'.S.S. AIR - - - - 3 G'.J.S. AIR - - - - 4 Y.S.S. AIR - - - - 4 Y.S.S. AIR - - - - 3 G'.J.S. AIR - - - - 4 Y.G'.J.S. AIR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

CERTIFICATE OF ANALYSIS

Work Order	EW2300845	Page	: 1 of 3
Client	: SHELLHARBOUR CITY COUNCIL	Laboratory	: Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 02-Mar-2023 10:42
Order number	: 147649	Date Analysis Commenced	: 06-Mar-2023
C-O-C number	:	Issue Date	: 13-Mar-2023 13:29
Sampler	: Robert DaLio		HALA NALA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		Accorditation No. 935
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Zoran Grozdanovski	Laboratory Operator	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Dust analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656.

- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth as sampling data was provided by the client.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Depositon Gauges.
- The dust gauges for all samples were full when received by the laboratory. They may have overflowed in the field. Results for these gauges are thus reported on an 'as received' basis.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 01/02/2023 - 01/03/2023	DDG2 01/02/2023 - 01/03/2023	DDG3 01/02/2023 - 01/03/2023	DDG4 01/02/2023 - 01/03/2023	
		Sampli	ng date / time	01-Mar-2023 09:15	01-Mar-2023 08:55	01-Mar-2023 09:25	01-Mar-2023 09:15	
Compound	CAS Number	LOR	Unit	EW2300845-001	EW2300845-002	EW2300845-003	EW2300845-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.9	0.3	0.7	1.9	
Ash Content (mg)		2	mg	15	5	12	31	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.6	0.5	0.8	0.5	
Combustible Matter (mg)		2	mg	9	8	12	9	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	1.5	0.8	1.5	2.4	
Total Insoluble Matter (mg)		2	mg	24	13	24	40	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

· .
- C . N
(ALS)

CHAIN OF CUSTODY La Sydney: 277 Woodpark Rd, Smithlield NSW 2176 Ph: 02 8784 8555 E;samples.sydney@alsenviro.com

ALS Laboratory: please tick →

 Ph: 02 8784 8555 E.samples.sydnøy@alsenviro.com
 Ph:07 3243 7223

 □ Newcastle: 5 Rosegum Rd, Warabroek NSW 2304
 □ Townsville:

 Ph:02 4968 9433 E.samples.newcastle@alsenviro.com
 Ph:07 4796 0600

Brisbane: 32 Shand St. Stafford QLD 4053
 Pht07 3243 7222 E samples brisbane@alsenviro.com
 Townsville: 14-15 Desma Ct. Bohle QLD 4818
 Pht07 4786 0606 E : tow-salle amronment#@alsenviro.com

Melbourne: 2-4 Westall Rd. Springvala ViC 317.1
Ph.03.8549.9600 E: samples melbourna@alsernitro.com
 Adelaide: 2-1 Burna Rd. Porotaka SA 5095
Ph: 08.8550.0800 E:ndelaide@alsernitro.com

.

El Perth: 10 Hod Way, Malaga WA 6090 Ph. 08 9209 7653 El samples parti@alisenviro.com El Launceston: 27 Wellington St, Launceston TAS 7250 Ph. 03 6331 2158 El saunceston@alisenviro.com

CLIENT:	Shellharbour City Council	TURNAROUND REQUIREMENT	S: 🛛 Standard TAT (List due date):	List due date): FO								FOR LABORATORY USE ONLY (Circle)				2
OFFICE:	Dunmore	(Standard TAT may be longer for some e.g., Ultra Trace Organics)	Non Standard or urgent TAT (List d	Non Standard or urgent TAT (List due date):									#	Yes	No q	(De
PROJECT:	Dunmore Dust	ALS QUOTE NO .: WO/030/19	TENDER						ER (C	ircle)		Free ice / mozen ic receipt?	xe oricks present up	on yes	No	MA
ORDER NUMBER:				COC:	1	2	3	4	5	6	7	Rendom Semple T	Cemperature on Red	ceipt:	.c	attr.
PROJECT MANAGER	Ryan Stirling			OF:	.1	2	3	4	5	6	7	Other comment.				
SAMPLER: Micha	el Santos	SAMPLER MOBILE: 0403 590 899	RELINQUISHED BY:	RECE	EIVED	BY:					RELI	INQUISHED BY:		RECEIVED B	Y:	
COC emailed to ALS	?(YES / NO)	EDD FORMAT (or default):	Michael Santas		h	eta										
Email Reports to :			DATE/TIME:	DAŤE	Ë/TIME			~			DATI	E/TIME:		DATE/TIME:		
Email Invoice to :			27.9.23 17:00	2	앢	7	l'l	3						·		
					1		r									

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC reports to:

ALS USE ONLY	SAMPL MATRIX: So	E DETAILS Ilid(S) Water(W)		CONTAINER INFORMATION	CONTAINER INFORMATION ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).					Additional Information				
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	A04 (Ash, CM, TIS)						12		Comments on likely contaminant levels. dilutions, or samples requiring specific QC analysis etc.
	DDG1	27.9.23 10:18	AIR			1								
	DDG2	0:0	AIR			1				E 14	nviron : /ollong	nental I	Divisio]
	DDG3		AIR			1								· · · · · · · · · · · · · · · · · · ·
	DDG4	10:30	AIR			1					EVV	230	385	8
										τei	ephone : 0;	42253125		
	Des Unexpression Displice Max Miles Press	ed Blocks, OPC = Nitro Press	d OPC: SH	TOTAL	10	rved Plastic	AG = Amber Glass	Innreserv	ved: AP - Airfi	reight Unpres	erved Plastic			
V = VOA Vial HCI Preserve Z = Zinc Acetate Preserved	H = Unpreserved Plastic; N = Nitric Preser d; VB = VOA Vial Sodium Bisulphate Preserved Bottles; ST = 3	ved mastic; UKC = Minc Preserve rved; VS = VOA Vial Sulfuric Prese Sterile Bottle; ASS = Plastic Bag fo	rved; AV = Ai r Acid Sulpha	freight Unpreserved Vial SG = Sulfuric Preserved te Soils; B = Unpreserved Bag.	Amber Glass	; H = HCl pr	eserved Plastic; HS	S ≃ HCl pr	reserved Spe	ciation bottle;	SP = Sulfuric	Preserved Pl	astic; F = For	maldehyde Preserved Glass;

CERTIFICATE OF ANALYSIS

Work Order	EW2303858	Page	: 1 of 3
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 27-Sep-2023 15:31
Order number	: 156810	Date Analysis Commenced	: 29-Sep-2023
C-O-C number	:	Issue Date	09-Oct-2023 16:06
Sampler	: Michael Santos, Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		According to Bac
No. of samples received	: 4		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Thomas Regan	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Dust analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656.

- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation is not held for results reported in g/m².mth.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Depositon Gauges.
- Sample exposure period is 26 days which is outside the typical exposure period of 30 +/- 2 days as per AS3580.10.1.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)		Sampli	Sample ID	DDG1 01/09/2023 - 27/09/2023 27-Sep-2023 10:18	DDG2 01/09/2023 - 27/09/2023 27-Sep-2023 10:10	DDG3 01/09/2023 - 27/09/2023 27-Sep-2023 11:10	DDG4 01/09/2023 - 27/09/2023 27-Sep-2023 10:30	
Compound	CAS Number	LOR	Unit	EW2303858-001	EW2303858-002	EW2303858-003	EW2303858-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.4	0.5	0.8	6.5	
Ash Content (mg)		2	mg	6	9	14	103	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.3	1.0	0.4	3.0	
Combustible Matter (mg)		2	mg	6	16	8	46	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.7	1.5	1.2	9.5	
Total Insoluble Matter (mg)		2	mg	12	25	22	149	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

Appendix G:

Surface Gas (Methane) Field Sheets. Quarters 1-4

ALS	

CHAIN OF CUSTODY □ Sydney: 277 Woodpark Rd. Snithfield NSW 2176 ALS Laboratory: please tick → □ Newcastle: 5 Rosegum Rd, Waratroch NSW 2304 Ph: 02 8784 3555 E samples_exactle@labernvire.com

 Pf
 Distance
 32 Shared St. Stafford QLD 4053

 am
 Ph:07 3243 7222 Estamples bristbane@aisenviro.com

 304
 Distance@aisenviro.com

 305
 Townsville: 14-15 Deema CL Bohle OLD 4818

 am
 Ph:07 4736 0600 E: wwwsile anurannemate@aisenviro.com

Melbourne: 2-4 Westall Rd, Springvals VIC 3171
Ph:03 8549 9600 E: samples.melbourne@sileenviro.com
 Adelaide: 2-1 Burna Rd, Pooraka SA 6096
Ph: 08 8359 0860 E.acelaide@alsenviro.com

Perth: 10 Hod Way, Malaga WA 8090
Ph: 08 9209 7655 E: camples.perth@alsenviro.com
Launceston: 27 Wellington St. Launceston TAS 7250
Ph: 03 6331 2158 E: launceston@alsenviro.com

· · ·							_					NAME AND ADDRESS OF AD	IN THE REPORT OF T	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	ANALY DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF
CLIENT:	Shellharbour City Council	TURNAROUND REQUIREM	QUIREMENTS : Standard TAT (List due date):									IORY USE C	NEY (Circle)	\sim 10	
OFFICE:	41 Burelli St WOLLONGONG NSW 2500	me tests Non Standard or urgent TAT (List due date):							G	isiddy Seal inte	e 7		オーン		
PROJECT:	Dunmore Quarterly Methane Testing	ALS QUOTE NO.:	ALS QUOTE NO.: WO/030/19 TENDER					MBER	(Ĉircle)	ceipt?	un in Kara bi kac		es i N	- - 4 4
ORDER NUMBER	ł:			COC:	1	2	3	4 E	6	7 Re	indom Sample	Temperatura di	n Resaipt	¦, , , , , , , , , , , , , , , , , , ,	
PROJECT MANA	GER: Joel Culton			OF:	1	2	3	4 5	6	7 0	het comment.				
SAMPLER:		SAMPLER MOBILE:	RELINQUISHED BY:	REC		BY:	,			RELING	QUISHED BY	:	RECEIV	ED BY:	
COC emailed to A	ALS? (YES / NO)	EDD FORMAT (or default):	Michael		12	e	19								
Email Reports to	:			DATE	E/TIME:	~	_	-		DATE/T	IME:		DATE/T	TIME:	
Email Invoice to :			13112122	1	311	2	2	2_							

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC reports to:

ALS USE ONLY	SAMPLE MATRIX: Sol	DETAILS id(S) Water(W)		CONTAINER INFORMATION			IS REQUIE	ED includir	auite price) quired).	Additional Information				
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Surface Methane Testing								Comments on likely contaminant levels, ditutions, or samples requiring spedflc QC analysis etc.
	Methane	13/12/22	w			1	1							
							L							
					- 									
						, 								
												I	l	
									+	Envir Wolld	onmer	ital Divi	sion	
					<u> </u>					Wo	rk Order			
											VVZ	2003	920	
			+ +											
										Telephor	ne : 02 422	53125		·
											1	1		
					-									
 														
				тоти	10									
Water Container Codes: V = VOA Vial HCI Preserv Z = Zinc Acetate Preserve	P = Unpreserved Plastic; N = Nitric Preser ed; VB = VOA Vial Sodium Bisulphate Prese d Bottle; E = EDTA Preserved Bottles; ST =	rved Plastic; ORC = Nitric Preser erved; VS = VOA Vial Sulfuric Pre Sterile Bottle; ASS = Plastic Bag	ved ORC; SH served; AV = A for Acid Sulph	= Sodium Hydroxide/Cd Preserved; S = Sodiu Airfreight Unpreserved Vial SG = Sulfuric Pres rate Soils; B = Unpreserved Bag.	m Hydroxide P erved Amber (reserved Plas Slass; H = H	tic; AG = An CIpreserved	ber Glass Unp Plastic; HS =	preserved; AP - HCI preserved	Airfreight Un Speciation bo	preserved Pla ottle; SP = St	astic Ilfuric Preservi	ed Plastic; F	= Formaldehyde Preserved Glass;

			ALS Lar	ndfill Emissions Re	port
Client: Site:	Shellharbour Dunmore	City Council		Date: Sampler(s)	13/12/2022 Robert DaLio, Michael Santos
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments
ŀ	4				No Access,
E	3 1	6168 220	302 432	0.0	
E	3 2	6168 253	302 438	0.0	
E	3 3	6168 280	302 437	0.0	
E	3 4	6168 311	302 439	0.0	
E	3 5	6168 335	302 437	0.0	
E	3 6	6168 376	302 435	0.0	
E	3 7	6168 372	302 434	0.0	
(C 1	6168 437	302 374	0.0	
	2 2	6168 406	302 381	0.0	
(3	6168 362	302 393	0.0	
(C 4	6167 317	302 409	0.0	
(5 5	6167 253	302 415	0.0	
C	6	6168 182	302 422	0.0	

•			1		
С	7	6168 115	302 415	1.4	
С	8	6168 075	302 412	1.4	
D	1	6168 181	302 352	0.0	
D	2	6168 189	302 368	0.0	
D	3	6168 195	302 366	0.0	
D	4				No Safe Access
D	5				No Safe Access
D	6				No Safe Access
E	1	6168	302		No Safe Access
E	2	6168	302		No Safe Access
E	3	6168	302		No Safe Access
E	4	6168 188	302 342	0.0	
E	5	6168 202	302 340	0.0	
E	6	6168 222	302 336	0.0	
E	7	6168 244	302 330	0.0	
E	8	6168 255	302 324	0.0	
F	1	6168 160	302 325	0.0	
F	2	6168 170	302 323	0.0	
F	3	6168 179	302 325	0.0	
F	4	6168 189	302 324	0.0	

F	5	6168 241	302 314	0.0	
G	1	6168 410	302 249	0.0	
G	2	6168 419	302 289	0.0	
G	3	6168 442	302 325	0.0	
G	4	6168 466	302 360	0.0	
Н	1	6168 487	302 376	0.0	
н	2	6168 465	302 295	0.0	
Н	3	6168 393	302 220	0.0	
Н	4	6168 330	302 161	0.0	
н	5	6168 277	302 112	0.0	
н	6	6168 241	302 085	0.0	
н	7	6168 162	301 077	0.0	
н	8	6168 078	301 073	0.0	
н	9	6167 991	302 149	2.3	
н	10	6167 889	302 246	0.0	
Н	11	6167 876	302 317	0.0	
н	12	6167 887	302 423	0.0	
н	13	6168 396	302 555	0.0	
Н	14	6168 350	302 549	0.0	
Н	15	6168 290	302 539	0.0	
Н	16	6168 221	302 558	0.0	

	1			1	
Н	17	6168 176	302 585	0.0	
Н	18	6168 122	302 620	0.0	
Н	19	6168 079	302 617	0.0	
Н	20	6168 111	302 568	0.0	
Н	21	6168 160	302 540	0.0	
н	22	6168 093	302 513	0.0	
н	23	6168 230	302 525	0.0	
н	24	6168 291	302 530	0.0	
н	25	6167 380	302 544	0.0	
	1				NO ACCESS EXCLUSION ZONE
J	1	6168 328	302 209	0.0	
J	1	6168 328 6168 294	302 209 302 221	0.0	
J J	1	6168 328 6168 294 6168 256	302 209 302 221 302 231	0.0 0.0 0.0	
J J J	1 2 3 4	6168 328 6168 294 6168 256 6167 207	302 209 302 221 302 231 302 248	0.0 0.0 0.0 0.0	
J J J	1 2 3 4	6168 328 6168 294 6168 256 6167 207 6167 179	302 209 302 221 302 231 302 248 302 257	0.0 0.0 0.0 0.0	
J J J J J	1 2 3 4 5	6168 328 6168 294 6168 256 6167 207 6167 179	302 209 302 221 302 231 302 248 302 257	0.0 0.0 0.0 0.0 0.0 0.0	
J J J J	1 2 3 4 5	6168 328 6168 294 6168 256 6167 207 6167 179 6168 524	302 209 302 221 302 231 302 248 302 257 302 389	0.0 0.0 0.0 0.0 0.0 0.0	
J J J J K	1 2 3 4 5	6168 328 6168 294 6168 256 6167 207 6167 179 6168 524 6168 537	302 209 302 221 302 231 302 248 302 257 302 389 302 433	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
ی ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب	1 2 3 4 5 1 2	6168 328 6168 294 6168 256 6167 207 6167 179 6168 524 6168 537	302 209 302 221 302 231 302 248 302 257 302 389 302 433	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
ј ј ј ј к к	1 2 3 4 5 1 2 3	6168 328 6168 294 6168 256 6167 207 6167 179 6168 524 6168 537 6168 563	302 209 302 221 302 231 302 248 302 257 302 389 302 433 302 459	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

L	1	6168 758	302 336	0.0	
L	2	6168 728	302 321	0.0	
L	3	6168 707	302 301	0.0	
L	4	6168 690	302 275	0.0	
L	5	6168 660	302 247	0.0	
L	6	6168 636	302 241	0.0	
				•	
Compressor Shed	1			0.0	
Office	1			0.0	
Community Recycling	1			0.0	
OLD Weighbridge	1			0.0	
OLD Weighbridge	1			0.0	
Revolve Shop	1			0.0	
Building Truckwash	1			0.0	
wew Weighbridge	1			0.0	
Methane Blank					1
(Pre testing)				0.0	Taken at entrance to Dunmore site before main gate
(Post testing)				0.0	Taken at entrance to Dunmore site before main gate
Comments:					
Sampling perform	ned in accord	ance to EPA Environmenta	l Guidelines Solid Waste La	andfills, Second Editio	on, 2016

Gas concentrations are reported as raw values without correction for background concentration.

н	1	6168 189	302 450	1.1	
н	2	6168 146	302 443	1.3	
н	3	6168 046	302 447	1.8	
н	4	6168 016	302 468	1.7	
н	5	6167 964	302 494	1.4	
н	6	6167 917	302 513	1.3	
н	7	6168 885	301 508	1.7	
н	8	6167 892	301 475	1.9	
н	9	6167 928	302 450	2.1	
н	10	6167 741	302 386	1.7	
н	11	6168 800	302 391	2.0	
н	12	6167 857	302 398	1.6	
н	13	6167 921	302 407	1.1	
н	14	6167 972	302 413	0.7	
Н	15	6167 037	302 419	0.7	
н	16	6167 093	302 425	0.7	
н	17	6167 172	302 434	0.6	
	18	6167 271	302 370	0.6	
	19	6167 200	302 221	0.7	
п	20	6167 158	302 144	1.0	
	21	6167 101	302 012	1.0	
н	22	6167 006	301 971	0.7	
н	24	6167 895	302 968	0.8	
н	25	6167 844	302 996	1.8	
н	25	6168 801	301 42	51	
н	27	6168 773	302 067	1.8	
н	28	6168 969	302 145	1.8	
н	29	6168 679	301 204	1.9	
н	30	6167 682	302 261	1.6	
н	31	6167 697	302 328	1.8	
н	32	6167 712	302 378	1.9	
	1	6167 932	301 154	1.4	
	2	6167 933	302 104	1.6	
	3	6167 939	302 049	1.5	
	4	6167 952	301 995	1.4	
J	1	6168 147	302 100	1.6	
J	2	6168 084	302 124	1.5	
J	3	6168 008	302 153	1.5	
J	4	6167 970	302 164	1.5	
J	5	6167 938	302 166	1.5	
		0400.000	000 007		
ĸ	1	6168 333	302 287	0.4	
К	2	6168 350	302 337	0.4	
К	3	6168 390	302 343	0.6	
к	4	6168 396	302 301	0.4	
к	5	6168_364	302_276	0.5	
			L		
L	1	6168 568	302 232	0.6	
L	2	6168 563	302 203	0.7	
L	3	6168 437	302 175	0.8	
L	4	6168 377	302 125	0.6	
L	5	6168 340	302 068	0.9	
L	6	6168 301	302 034	0.9	
	1				
Compressor Shed	1			2.1	
Office	1	4	+	2.8	
Community Recycling Centre	1		+	2.1	
OLD Weighbridge	1	4	+	0.5	
OLD Weighbridge Toilet	1		+	3.4	
Revolve Shop	1		+	1.8	
Building Truckwash	1			0.6	
rvow weighdridge	11	4 <u></u>	1	2.1	
Methane Blank (Pre testing)				1.0	Taken at entrance to Dunmore site before main gate
wetnane blank (Post testing)	I			0.9	I divert at entrantCe to Dunmore site before main gate
Comments:					
Comments:	e to EPA Environm	ental Guidelines Solid Works	Landfills Second Edition 2	016	

Client:		Shellharbour City C	ouncil		Date:	17/12/2021
Site:		Dunmore			Sampler(s)	Robert DaLio, Megan Gould
Transact / Locatio	on	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments
	А					No Vehicle Access, Very Overgrown (Snake Haszrd and uneven footing)
	в	1	6168 021	302 330	0.4	
	в	2	6168 052	302 334	3.1	Methane Cage
	в	3	6168 077	302 334	0.6	
	в	4	6168 102	302 332	0.8	
	в	5-8				No Vehicle Access, Very Overgrown (Snake Haszrd and uneven footing)
	с	1	6168 244	302 275	0.8	
	С	2	6168 133	302 303	0.8	
	С	3	6168 076	302 313	4.0	
	С	4	6167 980	302 319	0.8	
	C	5	6167 905	302 306	0.5	
	C C	7	6168 857	302 299	0.6	
	0		0100 040	002 204	0.4	
	D	1	6167 944	302 282	1.8	
	D	2	6167 955	302 283	1.9	
	D	3	6168 977	302 277	1.2	
	D	4-9				No Vehicle Access, Very Overgrown (Snake Haszrd and uneven footing)
				1		
	E	1	6168 023	302 230	1.4	
	E	2	6168 032	302 227	1.6	
	F	3	6167 994	302 223	1.8	
	F	5	6167 948	302 266	1.4	
	-					
	F	1	6167 939	302 248	1.0	
	F	2	6167 962	302 237	0.8	
	F	3	6167 986	302 227	1.3	
	F	4	6168 013	302 214	0.8	
	F	5				No Vehicle Access, Very Overgrown (Snake Haszrd and uneven footing)
	F	6				No Vehicle Access, Very Overgrown (Snake Haszrd and uneven footing)
	c	4	6168 218	302 180	11	
	G	2	6168 233	302 193	1.0	
	G	3	6168 241	302 207	1.0	
				1		

CHAIN OF CUSTODY	El Sydney 277 Woodpark Rd. Smithfield NSW 2176 Phr 02 8784 5555 Eisemples.syoney@alsenvire.com
ALS Laboratory: please tick >	CI Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 Ph 92 4968 9405 E samples newcastle@alserium.com

E Brisbane: 32 Shand St. Stafford QLD 4053 Ph:07 3243 7222 Eisamples brisbane@alserviro.com Ph.07 3243 7222 C Samples briesderigederinn over Towardelle 14-15 Desma Ct. Bohle OLD 4816 Ph.07 4796 0500 E: tomaile enrorinnesideatemación Ph.07 8329 0800 E acelaide@alcentre.com

Launceston: 27 Weilington St. Launceston TAS 795() Ph. 03 6331 2158 Et laundestoni@ainenvim.com

· · · ·		-								
CLIENT:	Shellharbour City Council			UND REQUIREMENTS :	Standard TAT (Lis	due date):			FOR LABORATORY USE	ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG I	NSW 2500	e.g Ultra Tra	r may be longer for some tests ice Organics)	Non Standard or u	gent TAT (List	due date):		Custody Seal Intact?	Yes No Nia
PROJECT:	Dunmore Quarterly Methane	Festing	ALS QUOT	E NO.: WO/030	0/19 TENDER		COC SEQU	JENCE NUMBER (Circle	 Free ice / frozen ice bricks pre- receipt? 	entupon Yes No N/A
ORDER NUMBER:							COC: 1 2	3 4 5 6	7 Random Semple Temperature	on Receipt 🗘 🗸
PROJECT MANAGER	; Ryan Stirling							3 4 5 6	7 Other comment:	
SAMPLER:		SAMPLER	MOBILE:		RELINQUISHED BY:	,	RECEIVED BY:	04	RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM	MAT (or defaul	t):	Michael		IT IT	nufq		
Email Reports to :					DATE/TIME:		DATE/TIME:	1. 100	DATE/TIME:	DATE/TIME:
Email Invoice to :					2116 123			16123		
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISF	OSAL: CC reports to	0:							
ALS USE ONLY	SA MATRI	MPLE DETAILS X: Solid(S) Water(W)		CONTAINER INFO	RMATION	ANALYSIS Where Ma	REQUIRED includi	ng SUITES (NB, Suite C	odes must be listed to attract suite price) or Dissolved (field filtered bottle required).	Additional Information
	38 ···									Comments on likely contaminant levels, dilutions,
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATI (refer to codes below,	YE TOTAL BOTTLES	Surface Wethane Testing				or samples requiring specific QC analysis etc.
	Methane	2116123	w			√ 2				· · · · · · · · · · · · · · · · · · ·
		0.101-5								
		,								
								Environ		
								Wollong	mental Division]
								Work	Order Baferones	1
				-				E FN	12302811	1
								+ ,		
	· · ·								動物との実施化	
				·····				▏▁▁▁▋╢▐▓		1
								⊢ ∎₩₽.	户时, 推了 到11	
									いる はかり (1997年1月11月)	<u>i</u>
								Telephone : 02	42253125	
								+		
	in the second street				TOTAL 10					
water Container Codes:	P – Unpreserved Plastic; N = Nitric P	reserved Plastic; QRC = Nitric Prese	rved ORC; SH ≖	Socium rivaroxide/Gd Preserved;	5 = Sodium Hydroxide Pr	served Plastic; /	Amber Glass Unpr - ex	eserved; AP - Aintreight Ui	preserved Plastic	

V = VOA Vial HCI Preserved; VB = VOA Vial Sulphate Preserved; VS = VOA Vial Sulphate Preserved; VS = VOA Vial Sulphate Preserved; VA = Anneer Glass; H = HCI preserved; VB = HCI preserved; VS = VOA Vial Sulphate Preserved; VS = VOA Vial Sulphate

			aport			
Client:	Shellbarbour City	Council		Date	21/06/2023	
Site:	Dunmore			Sampler(s)	Robert DaLio, Michael Santos	
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments	
,	4				No Safe Access	
		e169 000	202,422	0.0		
	1	0100 222	302 433	0.0		
E	3 2	6168 238	302 436	0.0		
E	3 3	6168 263	302 436	0.0		
	3 4	6168 290	302 439	0.0		
	1					
(1	6168 439	302 374	0.0		
(2 2	6168 391	302 389	0.0		
(3	6168 326	302 410	0.1		-
(4	6167 252	302 422	0.1		
(5	6167 206	302 424	0.1		
(6	6168 164	302 423	0.1		-
(7	6168 107	302 411	0.0		-
(8	6168 055	302 406	0.0		
	1	1	1			
	1	6168 202	302 399	0.1		
[2 2	6168 191	302 402	0.0		
	3	6168 180	302 403	0.0		-
	4	6168 173	302 405	0.0		-
	5	6168 159	302 408	0.0		
	6	6168 149	302 407	0.0		
	7	6168 137	302 405	0.1		
	1					
E	1	6168 145	302 375	0.0		
E	2	6168 157	302 376	0.0		
	3	6168 172	302 378	0.0		
	4	6168 173	302 377	0.0		
E	5	6168 181	302 376	0.0		
	1			1		
F	1	6168 134	302 352	0.0		
F	2	6168 145	302 349	0.0		
F	F 3	6168 149	302 337	0.0		
-	4	6168 159	302 331	0.0		
	5	6168 158	302 325	0.0		
F	6	6168 157	302 320	0.0		
	1					
	1	6168 410	302 256	0.0		-
6	2	0108 420 6169 440	302 283	0.0		
	3 4	6168 464	302 321	0.0		-

н	1	6168 411	302 554	0.0	
н	2	6168 360	302 553	0.0	
н	3	6168 322	302 541	0.0	
		0108 322	302 541	0.0	
н	-	6168 310	302 555	0.0	
		0108 213	302 303	0.0	
		0100 100	302 381	0.0	
н		6108 144	301 604	0.0	
н	8	6168 101	301 631	0.0	
н	9	6168 076	302 599	0.0	
н	10	6168 118	302 556	0.1	
н	11	6168 159	302 533	0.1	
н	12	6168 046	302 520	0.1	
н	13	6168 038	302 500	0.0	
н	14	6168 090	302 511	0.0	
н	15	6168 135	302 513	0.0	
н	16	6167 197	302 520	0.0	
н	17	6167 257	302 524	0.0	
н	18	6167 471	302 322	0.0	
н	19	6167 448	302 277	0.0	
н	20	6167 394	302 218	0.0	
н	21	6167 278	302 160	0.0	
н	22	6167 225	302 111	0.0	
н	23	6167 225	302 072	0.0	
н	24	6168 012	302 064	0.0	
н	25	6168 093	302 91	0.1	
н	26	6168 150	302 150	0.0	
н	27	6168 197	302 186	0.0	
н	28	6168 250	302 240	0.1	
н	29	6168 288	302 313	1.2	
н	30	6168 345	302 404	0.0	
н	31	6168 446	302 484	0.0	
	1				NO ACCESS CONSTRUCTION
1	1	6168 347	302 198	0.0	
L	1	6168 347 6168 324	302 198 302 207	0.0	
د ا	2	6168 347 6168 324 6168 306	302 198 302 207 302 216	0.0	
د ل ل	3	6168 347 6168 324 6168 306	302 198 302 207 302 216	0.0	
د ل ل	3	6168 347 6168 324 6168 306 6167 284	302 198 302 207 302 216 302 225	0.0 0.0 0.0	
د ر ر ر	3	6168 347 6168 324 6168 306 <u>6167</u> 284	302 198 302 207 302 216 302 225	0.0 0.0 0.0	
د د د ب ب ب	3	6168 347 6168 324 6168 306 6167 284 6168 523	302 198 302 207 302 216 302 225 302 396	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
J	1 2 3 4 1 2	6168 347 6168 324 6168 306 6167 284 6168 523 6168 523	302 198 302 207 302 216 302 225 302 396 302 446	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
J	1	6168 347 6168 324 6168 306 6167 284 6168 523 6168 523 6168 540 6168 581	302 198 302 207 302 216 302 225 302 225 302 396 302 446 302 448	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
J J K K K	1 2 3 4 1 2 2 3	6168 347 6168 324 6168 306 6167 284 6168 523 6168 523 6168 540 6168 540	302 198 302 207 302 216 302 225 302 246 302 446 302 448 302 448	00 00 00 00 00 00 00 00 00 00 00 00 00	
ј К К К	1	6168 347 6168 324 6168 326 6168 306 6168 523 6168 540 6168 540 6168 540 6168 580	302 198 302 207 302 216 302 225 302 396 302 446 302 448 302 448	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	1 2 3 4 1 2 2 3 4 4 5	6168 347 6168 324 6168 306 6167 284 6168 523 6168 540 6168 540 6168 581 6168 580 6168 546	302 198 302 207 302 216 302 225 302 396 302 446 302 448 302 387 302 376	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	1 2 3 4 1 2 2 3 3 4 4 5	6168 347 6168 324 6168 305 6168 523 6168 523 6168 520 6168 540 6168 580 6168 540	302 198 302 207 302 216 302 225 302 396 302 396 302 446 302 448 302 387 302 376	00 00 00 00 00 00 00 00 00 00 00 00 00	
	1 2 3 4 1 2 2 3 3 4 4 5	0168 347 0168 324 0168 326 0167 284 0168 522 0168 542 0168 543 0168 543 0168 543 0168 545 0168 545 0168 545	302 168 302 207 302 216 302 226 302 226 302 398 302 446 302 446 302 387 302 387 302 376	00 00 00 00 00 00 00 00 00 00	
		0168 347 0168 324 0168 326 0162 284 0168 522 0168 542 0168 540 0168 540 0168 540 0168 540 0168 540 0168 540	302 168 302 207 302 216 302 226 302 289 302 398 302 446 302 446 302 449 302 376 302 376 302 370	00 00 00 00 00 00 00 00 00 00 00	
		6168 347 6188 324 6188 324 6188 522 6188 522 6188 540 6188 5	302 168 302 207 302 216 302 216 302 255 302 466 302 446 302 397 302 376 302 376 302 378 302 378	00 00 00 00 00 00 00 00 00 00 00 00 00	
		0168 347 0168 344 0168 306 0162 204 0168 522 0168 540 0168 540 0168 540 0168 540 0168 540 0168 540 0168 540 0168 540 0168 540 0168 740 0168 740 0168 653	302 168 302 207 302 216 302 226 302 246 302 446 302 448 302 337 302 376 302 370 302 329 302 303 302 229 302 248	00 00 00 00 00 00 00 00 00 00 00 00 00	
		0168 347 0168 344 0168 356 0162 244 0168 522 0168 522 0168 540 0168 302 168 302 207 302 216 302 225 302 285 302 446 302 446 302 446 302 387 302 376 302 376 302 376 302 376 302 276 302 226			
		0168 347 0168 344 0168 326 0162 284 0168 553 0168 553 0168 540 0168 5	302 168 302 207 302 216 302 216 302 25 302 366 302 446 302 397 302 376 302 376 302 376 302 370 302 370 302 279 302 279 302 279 302 279 302 279 302 279 302 279		
		6168 347 0168 344 0168 324 0168 522 0168 522 0168 520 0168 520 0168 540 0168 540 0168 540 0168 740 0168 740 0168 740 0168 640 0168 740 0168 640 0168 6	302 168 302 207 302 216 302 225 302 306 302 446 302 448 302 307 302 376 302 376 302 379 302 329 302 229 302 228 302 228 302 228		
ے ایس ایس ایس ایس ایس ایس ایس ایس ایس ایس		0168 347 0168 344 0168 324 0162 244 0168 523 0168 523 0168 540 0168 540	302 168 302 207 302 216 302 226 302 285 302 448 302 448 302 397 302 397 302 376 302 376 302 309 302 309 302 279 302 248 302 248 302 278		
		6168 327 6168 324 6168 326 6162 284 6162 523 6168 523 6168 540 6168 540 6168 540 6168 540 6168 540 6168 740 6168 740 6168 655 6168 655 6168 657 6168 557	302 168 302 207 302 216 302 216 302 225 302 309 302 448 302 307 302 376 302 307 302 376 302 303 302 279 302 248 302 228 302 279 302 248		
J J J J J J J J J J J J J J J J J J J		6168 347 0193 324 0193 324 0192 324 0192 244 0192 244 0192 244 0198 522 0198 540 0198 540 0198 540 0198 740 0198 740 0198 635 0198 635 0198 657 0198 657	302 168 302 207 302 216 302 225 302 306 302 446 302 446 302 387 302 387 302 387 302 387 302 376 302 293 302 293 302 295 302 295 302 216		
A Gamping State Sta		6168 347 6168 344 6168 326 6162 204 6162 204 6162 521 6168 540 6168 540 6168 540 6168 540 6168 540 6168 740 6168 740 6168 657 6168 657	302 168 302 207 302 216 302 225 302 366 302 446 302 448 302 307 302 376 302 376 302 376 302 370 302 279 302 279 302 279 302 279		
A A		6168 347 6168 344 6168 364 6152 244 6168 552 6168 550 6168 550 6168 550 6168 550 6168 740 6168 740 6168 740 6168 740 6168 651 6168 657 6168 657 6168 657 6168 557	302 168 302 207 302 216 302 25 302 396 302 446 302 448 302 448 302 376 302 376 302 376 302 376 302 279 302 279 302 279 302 248 302 279		
		0168 347 0168 344 0168 354 0162 244 0168 522 0168 522 0168 540 0168 302 168 302 207 302 216 302 225 302 285 302 446 302 448 302 387 302 387 302 376 302 376 302 376 302 279 302 279 302 279 302 279 302 279 302 279 302 276	00 00 00 00 00 00 00 00 00 00 00 00 00		
J L L		6168 347 6168 344 6168 366 6162 244 6162 523 6168 545 6168 545 6168 545 6168 545 6168 740 6168 740 6168 740 6168 740 6168 655 6168 557 6168 557	302 168 302 207 302 216 302 225 302 296 302 446 302 448 302 307 302 376 302 370 302 279 302 279 302 279 302 279 302 279	00 00 00 00 00 00 00 00 00 00 00 00 00	
J L L		6168 347 6168 344 6168 344 6162 244 6162 542 6168 542 6168 540 6168 br>6170 61	302 168 302 207 302 216 302 225 302 265 302 449 302 449 302 449 302 376 302 376 302 376 302 279 302 203 302 279 302 249 302 279 302 249 302 179	00 00 00 00 00 00 00 00 00 00 00 00 00	
A A		6168 327 6168 324 6168 326 6162 204 6162 204 6165 523 0168 543 6168 543 6168 543 6168 545 6168 545 6168 545 6168 745 6168 647 6168 647 6168 647	302 168 302 207 302 216 302 225 302 25 302 366 302 446 302 449 302 397 302 376 302 376 302 376 302 376 302 376 302 279 302 288 302 279 302 288 302 279	000 00 00 00 00 00 00 00 00 00 00 00 00	
A A		6168 347 0198 324 0198 324 0198 324 0198 249 0198 552 0198 552 0198 550 0198 550 0198 550 0198 550 0198 550 0198 550 0198 557 0198 557 0198 557 0198 557	302 168 302 207 302 216 302 225 302 306 302 446 302 448 302 376 302 376 302 376 302 376 302 279 302 279 302 279 302 279 302 279 302 279		
J L L		6168 347 0168 344 0168 354 0162 244 0168 552 0168 552 0168 550 0168 550 0168 556 0168 702 0168 651 0168 657 0168 657 0168 557 0168 557	302 168 302 207 302 216 302 225 302 426 302 446 302 446 302 446 302 387 302 387 302 387 302 387 302 387 302 29 302 29 302 203 302 216 302 216 302 217 302 216 302 216 302 170 302 100 302 br>302 100 300 100 100 100 100 100 100 100 100	00 00 00 00 00 00 00 00 00 00 00 00 00	Taten at extance to Dumore atte before main atte
J L L		6168 327 6168 324 6168 326 6162 284 6162 284 6168 522 6168 540 6168 540 6168 540 6168 540 6168 540 6168 540 6168 655 6168 655 6168 655 6168 655 6168 655 6168 557 6168 557	302 168 302 207 302 216 302 225 302 26 302 309 302 448 302 307 302 376 302 376 302 376 302 307 302 279 302 248 302 279 302 248 302 279	00 00 00 00 00 00 00 00 00 00 00 00 00	Taken at entrance to Durmore site before main gate
A A		6168 347 6168 344 6168 344 6162 244 6168 522 6168 522 6168 540 6168 540 6168 540 6168 540 6168 540 6168 740 6168 740 6168 740 6168 740 6168 757 6168 653 6168 655 6168 657 6168 557	302 168 302 207 302 216 302 225 302 306 302 446 302 448 302 448 302 448 302 248 302 337 302 337 302 337 302 239 302 239 302 248 302 279 302 248 302 279 302 248	00 00 00 00 00 00 00 00 00 00 00 00 00	
A A		6168 327 6168 324 6168 326 6162 204 6162 204 6168 520 6168 540 6168 547 6168 547	302 168 302 207 302 216 302 225 302 25 302 366 302 446 302 449 302 397 302 376 302 376 302 376 302 376 302 376 302 279 302 248 302 279 302 248 302 279	00 00 00 00 00 00 00 00 00 00 00 00 00	
A A	2 2 3 4 4 1 1 2 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6168 347 0198 344 0198 344 0198 344 0198 346 0198 247 0198 552 0198 552 0198 550 0198 551 0198 551 0198 551 0198 552 0198 552 0198 552 0198 557 0198 5	302 168 302 207 302 216 302 216 302 25 302 306 302 448 302 37 302 37 302 37 302 37 302 37 302 37 302 270 302 28 302 270 302 28 302 270 302 28 302 270 302 28 302 270 302 28 302 179 302 48 302 270 302 30 302 170 302 48 302 30 302 r>302 30 30 302 30 30 302 30 30 302 30 30 30 30 30 30 30 30 30 30 30 30 30 3		Taken at entance to Dummer ate before main gate

CHAIN OF CUSTODY □ Sydney: 277 Woodpark Po., Smithleid NSW 2178 ALS Laboratory: please tick → □ Newcastle: 5 Rasegum Rc, Warabrook NSW 2304

Brisbane: 32 Shand St, Stafford QUD 4063
 Ph:07 3243 7222 Eisangleis histore@gesentitic.com
 C Townsvilla: 14-15 Desma Ct Bohie QLD 4613
 Ph:07 4795 0600 Ei tovicalis an archmonul@sterviro.com

Melbourne: 2-4 Westall Rd. Springvale VIC 3174
Ph:03 8549 9800 El samples melbourne@alsenvin.com
Adelaidos 2-1 Burna Rd. Poaraka SA 5095
Ph: 08 4859 0980 Eseñaledaalsenvio com

Perth 10 Hod Way Malega WA 6090
 Ph.05 9209 7865 & samples.sech@alsemmic.com
 Lanceston: 27 Wallingron St. Lanceston: TAS 7260
 Ph.05 933 21536 E Jaunceston@alsemmic.com

			·															
CLIENT:	Shellharbour City Council		TURNAROL	JND REQUIREMENTS :	🗌 Standa	ard TAT (List	due date):								FC	R LABORAT	ORY USE O	ILY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TAT	imay be longer for some tests concerned tests concerned to the set of the set	Non St	tandard or urg	gent TAT (List	due date)							Cu	eicdy Seaf Intec	7	Yee No 1
PROJECT:	Dunmore Quarterly Methane Testi	ng	ALS QUOTI	E NO.: WO/0	30/19 TENDE	ER			coc	SEQI	JENCE N	UMBE	R (Cir	cle)	E te	ae ise / mozen is selpt?	e pricks presen	rupon Yes No 🯹
ORDER NUMBER:								COC:	1	2	3	4	5	6	7 Ros	ndom Sample T	emperature on	Receipt: C
PROJECT MANAGER:	Ryan Stirling							OF:	1	2	3	4	5	6	7 Q	her comment:	a an an an an an an an an an an an an an	
SAMPLER:		SAMPLER	MOBILE:		RELINQUE	SHED BY:	,	RECI	EIVED	BY:		,			RELING	UISHED BY:		RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FOR	AT (or default):	Mic	has	\sim		ŧ	4	es	~						
Email Reports to :					DATE/TIME	E:		DATE		د		_			DATE/T	IME:		DATE/TIME:
Email Invoice to :		,			28	1912	<u> </u>	4	20	Μ	12	5						
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL: CC reports t	D:															
		E DETANC					ANALYSI	S REQUIR	ED in	cludi	ng SUIT	ES (N	B. Suite	Code	es must be	e listed to attract	suite price)	
ALS USE ONLY	MATRIX: SO	blid(S) Water(W)		CONTAINER INI	FORMATION		Where I	vletais are req	uired, sp	ecify 1	otal (unfilte	red boti	le require	d) or D	Dissolved (i	field filtered bottle re	equired).	Additional information
						ŀ												Comments on likely contaminant levels, dilut or samples requiring specific QC analysis etc
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo	TIVE w)	TOTAL BOTTLES	ce ane ng											

	SAMPLEID			(refer to codes below)	BOTTLES	urface ethan isting						
						ŏŽμ"						
	Methane	2019123	w									
									Tau dirop MB	ntal Divisic	<u>1</u>	
					-				Wollongon	g Butaron(A		
					-				Work Ord	530432	6	
									-			
												<u></u>
										ארי ישר 1996 ארי ישר 1996 ארי ישר 1996		
			+						Telephone to	24220-	;	
				TO	na. 10							
ter Container Codes	 P = Unpreserved Plastic; N = Nitric Pr ved: VB = VOA Vial Sodium Bisulohate F 	reserved Plastic; ORC = Nitric Preser Preserved: VS = VOA Vial Sulfuric Pre	ved ORC; SH = served; AV = Air	Sodium Hydroxide/Cd Preserved; S = So freight Unpreserved Vial SG = Sulfuric Pr	dium Hydroxide P reserved Amber (reserved Plastic; A Slass; H = HCl pr	G = Amber Glass Un eserved Plastic; HS =	preserved; AP - Airfreig HCI preserved Speciat	ht Unpreserved Plastic ion bottle; SP ≃ Sulfuric I	Preserved Plastic; F =	Formaldehyde Preservo	ed Glass;
inc Acetate Preserv	ed Bottle; E = EDTA Preserved Bottles; S	ST = Sterile Bottle; ASS = Plastic Bac	for Acid Sulpha	e Soils; B = Unpreserved Bag.			-					

CERTIFICATE OF ANALYSIS

Work Order	EW2304326	Page	: 1 of 23
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Methane	Date Samples Received	: 20-Sep-2023 16:00
Order number	: 156810	Date Analysis Commenced	: 29-Sep-2023
C-O-C number	:	Issue Date	29-Sep-2023 16:10
Sampler	: Michael Santos, Robert DaLio		
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER METHANE		
No. of samples received	: 103		
No. of samples analysed	· 103		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Administration - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- Sampling performed By Wollongong in accordance to EPA Environmental Guidelines Solid Waste Landfills, Second Edition, 2016
- Gas concentrations are reported as raw values without correction for background concentration.

Sub-Matrix: GAS			Sample ID	А	В	В	В	В
(Matrix: GAS)				1-8	1	2	3	4
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-001	EW2304326-002	EW2304326-003	EW2304326-004	EW2304326-005
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Α	В	В	В	В
Point		-	-	1-8	1	2	3	4
GPS North		-	-		6168225	6168261	6168286	6168293
GPS East		-	-		302435	302440	302441	302441
CH4 Conc (ppm)		-	ppm		0.1	0.0	0.0	0.0
Comments		-	-	NO ACCESS				

Sub-Matrix: GAS			Sample ID	С	С	С	С	С
(Matrix: GAS)				1	2	3	4	5
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-006	EW2304326-007	EW2304326-008	EW2304326-009	EW2304326-010
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	C	C	С	C	С
Point		-	-	1	2	3	4	5
GPS North		-	-	6168434	6168363	6168297	6168239	6168163
GPS East		-	-	302379	302390	302416	302420	302422
CH4 Conc (ppm)		-	ppm	0.0	0.0	0.5	1.2	1.0

Sub-Matrix: GAS			Sample ID	С	D	D	D	D
(Matrix: GAS)				6	1	2	3	4
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-011	EW2304326-012	EW2304326-013	EW2304326-014	EW2304326-015
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	С	D	D	D	D
Point		-	-	6	1	2	3	4
GPS North		-	-	6168080	6168272	6168257	6168241	6168220
GPS East		-	-	302412	302393	302393	302388	302389
CH4 Conc (ppm)		-	ppm	7.8	0.1	0.0	1.4	0.0

Sub-Matrix: GAS			Sample ID	D	D	D	Е	E
(Matrix: GAS)				5	6	7	1	2
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-016	EW2304326-017	EW2304326-018	EW2304326-019	EW2304326-020
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	D	D	D	E	E
Point		-	-	5	6	7	1	2
GPS North		-	-	6168194	6168174	6168145	6168142	6168151
GPS East		-	-	30288	302401	302400	302373	302374
CH4 Conc (ppm)		-	ppm	0.9	1.0	0.6	6.0	1.6

Sub-Matrix: GAS			Sample ID	E	E	E	E	E
				3	4	5	6	7
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-021	EW2304326-022	EW2304326-023	EW2304326-024	EW2304326-025
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	E	E	E	E	E
Point		-	-	3	4	5	6	7
GPS North		-	-	6168164	6168176	6168184	6168196	6168222
GPS East		-	-	302372	302377	302374	302371	302372
CH4 Conc (ppm)		-	ppm	2.1	0.0	0.0	0.0	0.0

Sub-Matrix: GAS			Sample ID	E	F	F	F	F
(Matrix: GAS)				8	1	2	3	4
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-026	EW2304326-027	EW2304326-028	EW2304326-029	EW2304326-030
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	E	F	F	F	F
Point		-	-	8	1	2	3	4
GPS North		-	-	6168246	6168129	6168139	6168151	6168162
GPS East		-	-	302371	302359	302351	302342	302329
CH4 Conc (ppm)		-	ppm	0.0	5.5	5.5	1.7	0.7

Sub-Matrix: GAS			Sample ID	F	G	G	G	G
(Matrix: GAS)				5	1	2	3	4
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-031	EW2304326-032	EW2304326-033	EW2304326-034	EW2304326-035
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	F	G	G	G	G
Point		-	-	5	1	2	3	4
GPS North		-	-	6168174	6168404	6168423	6168444	6168465
GPS East		-	-	302327	302245	302296	302324	302362
CH4 Conc (ppm)		-	ppm	0.0	0.1	0.1	0.0	0.0

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	H 1	H 2	H 3	H	H 5
		Sampli	ng date / time	20-Sep-2023 00:00	 20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-036	EW2304326-037	EW2304326-038	EW2304326-039	EW2304326-040
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Н	Н	н	Н	Н
Point		-	-	1	2	3	4	5
GPS North		-	-	6168335	6168291	6168232	6168200	6168166
GPS East		-	-	302551	302542	302552	302578	302592
CH4 Conc (ppm)		-	ppm	0.1	0.4	0.2	0.6	0.0

Sub-Matrix: GAS			Sample ID	н	н	н	н	н
(Matrix: GAS)				6	7	8	9	10
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-041	EW2304326-042	EW2304326-043	EW2304326-044	EW2304326-045
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Н	Н	н	Н	Н
Point		-	-	6	7	8	9	10
GPS North		-	-	6168117	6168086	6168069	6168091	6168125
GPS East		-	-	302630	302625	302601	302582	302563
CH4 Conc (ppm)		-	ppm	0.1	0.0	0.1	1.3	1.8

Page	: 12 of 23
Work Order	: EW2304326
Client	: SHELLHARBOUR CITY COUNCIL
Project	 Dunmore Landfill Methane

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	H 11	H 12	H 13	H 14	H 15
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-046	EW2304326-047	EW2304326-048	EW2304326-049	EW2304326-050
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Н	Н	н	Н	Н
Point		-	-	11	12	13	14	15
GPS North		-	-	6168172	6167999	6168038	6168081	6168133
GPS East		-	-	302545	302500	302504	302514	302517
CH4 Conc (ppm)		-	ppm	0.3	1.0	0.0	0.0	0.0

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	H 16	H 17	H 18	H 19	H 20
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-051	EW2304326-052	EW2304326-053	EW2304326-054	EW2304326-055
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Н	Н	н	Н	Н
Point		-	-	16	17	18	19	20
GPS North		-	-	6168172	6168235	6168291	6168383	6168432
GPS East		-	-	302520	302525	302535	302547	302517
CH4 Conc (ppm)		-	ppm	0.4	0.1	0.0	0.0	0.0

Page	: 14 of 23
Work Order	: EW2304326
Client	: SHELLHARBOUR CITY COUNCIL
Project	 Dunmore Landfill Methane

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	H 21	H 22	H 23	H 24	H 25
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number LOR Unit		Unit	EW2304326-056	EW2304326-057	EW2304326-058	EW2304326-059	EW2304326-060
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	н	Н	н	Н	Н
Point		-	-	21	22	23	24	25
GPS North		-	-	6168453	6168473	6168482	6168497	6168485
GPS East		-	-	302490	302471	302467	302446	302420
CH4 Conc (ppm)		-	ppm	0.1	0.0	0.0	0.0	0.0

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	H 26	H 27	H 28	H 29	H 30
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number LOR Unit		Unit	EW2304326-061	EW2304326-062	EW2304326-063	EW2304326-064	EW2304326-065
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Н	н	н	н	н
Point		-	-	26	27	28	29	30
GPS North		-	-	6168486	6168452	6168393	6168346	6168287
GPS East		-	-	302354	302279	302213	302167	302111
CH4 Conc (ppm)		-	ppm	0.0	0.0	0.0	0.0	0.0

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	H 31	H 32	H 33	H 34	H 35
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number LOR Unit			EW2304326-066	EW2304326-067	EW2304326-068	EW2304326-069	EW2304326-070
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	н	Н	н	Н	Н
Point		-	-	31	32	33	34	35
GPS North		-	-	6168231	6168133	6168041	6167993	6167950
GPS East		-	-	302076	302067	302099	302144	302183
CH4 Conc (ppm)		-	ppm	0.0	0.0	0.0	5.3	0.2

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	H 36	H 37	H 38		 2
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	
Compound	CAS Number	LOR	Unit	EW2304326-071	EW2304326-072	EW2304326-073	EW2304326-074	EW2304326-075
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Н	Н	н	I	I
Point		-	-	36	37	38	1	2
GPS North		-	-	6167889	6167878	6167900	6168150	6168166
GPS East		-	-	302254	302370	302464	302088	302125
CH4 Conc (ppm)		-	ppm	0.0	0.0	0.0	0.0	0.0

Page	: 18 of 23
Work Order	: EW2304326
Client	: SHELLHARBOUR CITY COUNCIL
Project	 Dunmore Landfill Methane

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	 3	l 4	J 1	J 2	J 3
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-076	EW2304326-077	EW2304326-078	EW2304326-079	EW2304326-080
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	I	I	J	J	J
Point		-	-	3	4	1	2	3
GPS North		-	-	6168182	6168199	6168197	6168217	6168240
GPS East		-	-	302157	302237	302255	302249	302239
CH4 Conc (ppm)		-	ppm	0.1	0.0	0.0	0.0	0.0

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	J	J	K 1	к	K
				+	3	1	2	5
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-081	EW2304326-082	EW2304326-083	EW2304326-084	EW2304326-085
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	J	J	К	К	К
Point		-	-	4	5	1	2	3
GPS North		-	-	6168257		6168516	6168537	6168577
GPS East		-	-	302233		302391	302445	302454
CH4 Conc (ppm)		-	ppm	0.0		0.0	0.0	0.0
Comments		-	-		WORKS IN PROGRESS			

Page	: 20 of 23
Work Order	: EW2304326
Client	: SHELLHARBOUR CITY COUNCIL
Project	 Dunmore Landfill Methane

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	К 4	K 5	L 1	L 2	L 3
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-086	EW2304326-087	EW2304326-088	EW2304326-089	EW2304326-090
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	К	К	L	L	L
Point		-	-	4	5	1	2	3
GPS North		-	-	6168583	6168549	6168735	6168682	6168627
GPS East		-	-	302395	302376	302327	302278	302244
CH4 Conc (ppm)		-	ppm	0.1	0.0	0.1	0.0	0.0

Page	: 21 of 23
Work Order	: EW2304326
Client	: SHELLHARBOUR CITY COUNCIL
Project	 Dunmore Landfill Methane

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	L 4	L 5	L 6	Compressor Shed 1	Office 1
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-091	EW2304326-092	EW2304326-093	EW2304326-094	EW2304326-095
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	L	L	L	Compressor Shed	Office
Point		-	-	4	5	6	1	1
GPS North		-	-	6168582	6168559	6168507		
GPS East		-	-	302214	302186	302153		
CH4 Conc (ppm)		-	ppm	0.0	0.0	0.0	1.9	0.1

Sub-Matrix: GAS (Matrix: GAS)			Sample ID	Community Recycling Centre 1	OLD Weighbridge 1	OLD Weighbridge Toilet 1	Revolve Shop 1	Building Truckwash 1
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00
Compound	CAS Number	LOR	Unit	EW2304326-096	EW2304326-097	EW2304326-098	EW2304326-099	EW2304326-100
				Result	Result	Result	Result	Result
Sampling Data								
Transact / Location		-	-	Community	OLD Weighbridge	OLD Weighbridge	Revolve Shop	Building Truckwash
				Recycling Centre		Toilet		
Point		-	-	1	1	1	1	1
CH4 Conc (ppm)		-	ppm	0.1	0.0	0.0	0.0	0.0

Sub-Matrix: GAS			Sample ID	New Weighbridge	Methane Blank	Methane Blank	
(Matrix: GAS)				1	Pre Reading - Main	Post Reading - Main	
					Gate	Gate	
		Sampli	ng date / time	20-Sep-2023 00:00	20-Sep-2023 00:00	20-Sep-2023 00:00	
Compound	CAS Number	LOR	Unit	EW2304326-101	EW2304326-102	EW2304326-103	
				Result	Result	Result	
Sampling Data							
Transact / Location		-	-	New Weighbridge	Methane Blank	Methane Blank	
Point		-	-	1	Pre testing Main	Post testing Main	
					Gate	Gate	
CH4 Conc (ppm)		-	ppm	0.4	0.0	0.0	

Appendix H: Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Events

CLIENT:

CHAIN OF CUSTODY

ALS Laboratory: please tick →

C Sydney: 277 Woodpark Rd. Smithfield NSW 2176 Ph: 02 8784 8555 Elsamples sydnay@alsenviro.com C Newcastle: 5 Rosegum Rd. Warabrook NSW 2304

 Brisbane: 32 Shand St. Stafford QLO 4053
 Ph:07 3243 7222 E:samples brisbane@alsenviro.com Townsville: 14-15 Desma Ct. Bohle GLD 4818 LI Newcastle: 5 Nosegum Nd. Warabrook NSW 2304 LI Townsville: 14-15 Desma Ct, Bohte OLD 4318 Ph.02 4968 9433 Eisamples.newcastle@alsertvio.com Ph.07 4796 0600 Ei townsville.astronnartei@alsertvio.com

Cl Melbourne: 2-4 Westall Rd. Springvale VIC 3171 Ph:03 8549 9660 E. samples,melbourne@alsenviro.com CL Adelaide: 2-1 Burma Rd. Pooraka SA 5005 Ph: 03 8359 0890 Etadelaide@alsenviro.com

II Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alserwiro.com Launceston: 27 Wellington St, Launceston TAS 7250
 Ph: 03 6331 2158 E. faunceston@alsenviro.com

CLIENT: Shellharbour City Council OFFICE: PROJECT: Dunmore Landfill Overflows	TURNAROUND REQUIREMENTS : (Standard TAT may be longer for some tests e.g., Ultra Trace Organics) ALS QUOTE NO.	El townswile-entronnansi@ulleen.wo.com Ph: 03 Standard TAT (List due date): Non Standard or urgent TAT (List du	i 8359 0890 Earlelaide@alsenvio.com	Laurceston: 27 Wellington St, Laurceston Ph: 03 6331 2158 E. laurceston@alsenviro.cc FOR LABORATORY USE CONL Costody Sed Integra	TAS 7250 m
ORDER NUMBER:	W0/030/19 TEN	DER	COC SEQUENCE NUMBER (Circle	Free ice / frozen ice bricks present in	
PROJECT MANAGER: Ryan Stirling			coc: 1 2 3 + 4 5 6	7 Patrice Service	" (Yes) No. NA
SAMPLER: Robert Dalus SAM	PLER MOBILE:	RELINQUISHED BY:	OF: 1 2 3 4 5 6	7 Other comment:	^{cent} 7·2 ^c
Email Reports to :	FORMAT (or default):	Robat Delis	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
Email Invoice to :			DATE/TIME:		
COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC repo	Drts to:	15.3.23	13.3.23		IDATE/TIME:

	MATRIX: Sc	Did(S) Water(W)		CONTAINER INFORMATION			'SIS REQU • Metals are re	Additional Information					
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES								Comments on likely contaminant levels dilutions, or samples requiring specific analysis etc.
s	SWP1 1/2 . 2	20 01 5			+	TSS	Ha						
		42 4:13			+		1						elt 7.57
								. 	+	<u> </u>			<u>>/</u>
					+					·			
										<u> </u>			
												Envi Wolk	onmental Division
					<u> </u>							E	rk Order Reference
					┼───┼-								
												<u> </u>	
ntainer Codes: P = U /ial HCI Preserved: VB	npreserved Plastic; N = Nitric Preserved F = VOA Vial Sodium Bioulobata D	Plastic; ORC = Nitric Preserved O	IRC; SH = Sodi	TOTAL	10		_					Telephone	: 02 42253125

CERTIFICATE OF ANALYSIS

Work Order	EW2301202	Page	: 1 of 2
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Overflows	Date Samples Received	: 13-Mar-2023 15:46
Order number	: 147649	Date Analysis Commenced	: 13-Mar-2023
C-O-C number	:	Issue Date	21-Mar-2023 15:20
Sampler	: , Robert DaLio		Hac-MRA NATA
Site	:		
Quote number	: WO/030/19 TENDER OVERFLOW DISCHARGE		Accordition No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

Analytical Results

Sub-Matrix: WATER			Sample ID	SWP1	 	
(Matrix: WATER)				Point 1		
		Sampli	ng date / time	13-Mar-2023 09:15	 	
Compound	CAS Number	LOR	Unit	EW2301202-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.6	 	
EA025: Total Suspended Solids dried at	t 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	7	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at 104 \pm 2°C

Sydney: 277 Woodpark Rd. Smithfield NSW 2176
 Ph: 02 8784 8555 E.samptes.sydney@alsenviro.com
 Ph: 02 966 9433 E.samptes.rev.astrock NSW 2304
 Ph: 02 966 9433 E.samptes.rev.astrockenalserviro.com
 Ph: 02 966 9433 E.samptes.rev.astrockenalserviro.com

Brisbane 32 Shand St. Stafford QLD 4053
 Ph07 3245 7222 Esamples.brisbane@aiserwine.com
 Townsville: 14-15 Desma Ct. Bohle QLD 4818
 Ph07 4796 0600 E: tewnsville antionmental@atemvine.com

Melbourne: 2-4 Westall Rd, Springvale VIC 3171
Ph:03 8849 9600 E. samples melbourne@aleenviro.com
 Adelaide: 2-1 Burna Rd, Pooraka SA 5095
Ph:08 5359 0290 Eadelaide@aleenviro.com

El Perth. 10 Hod Way, Maiaga WA 6090 Ph: 08 9209 7655 E samplas,perth@alsonwiro.com El Laurceston: 27 Wellington St, Laurcestor TAS 7250 Ph: 03 8371 2156 E: laurcestor@alsonwiro.com

CLIENT:	Shellharbour City Council		TURNAR	DUND REQUIREMENTS : Standard TAT (Lis	t due date)	:			FOR LABORAT	ORYUSE	ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TA e.g., Ultra Tr	T may be longer for some tests ace Organics) Non Standard or u	rgent TAT (List due date)):		Custody Seel little	v 👘	Cres No NA
PROJECT:	Testing	SWP01 Overflow full	ALS QUO	TE NO.: WO/030/19 TENDER			COC SEQU	ENCE NUMBER (Circle) Free ice Afrozen ic receipt?	e bricks prese	nt upon Yes No N/A
ORDER NUMBER:						COC:	1 2	3 4 5	6 7 Random Sample 1	emperature o	n Receipt. 🥣 to
PROJECT MANAGER:	Joel Culton					OF:	1 2	3 4 5	6 7 Other comment		52
SAMPLER: Michae	el Santas	SAMPLER N	IOBILE: C	403520 891 RELINQUISHED BY:		REC	EIVED BY:		RELINQUISHED BY:		RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defau	It): Michael San	hon .	4	ret	a			
Email Reports to :			-	DATE/TIME:	-	DATE			DATE/TIME:		DATE/TIME:
Email Invoice to :				pi-05-23		<u>36</u>	1/5,	123			
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to	:								÷ .
ALS USE ONLY	SAMPLE MATRIX: So	E DETAILS lid(S) Water(W)		CONTAINER INFORMATION	ANALY	YSIS REQUIR	RED includir	g SUITES (NB. Si al (unfiltered bottle req	uite Codes must be listed to attract uired) or Dissolved (field filtered bottle	: suite price) required).	Additional Information
	SAMDLE ID		MATDIX	TYPE & PRESERVATIVE TOTAL		(1)	43, Total Mn	d Total Fe			Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SAMPLEID	DATE / TIME	MAIRIX	(refer to codes below) BOTTLES	TSS	NT-1, NT-2A (Ionic Balance	TOC, NT-4, NF	Dissolved and			
	SWP1	1.5-23 12:47	w		1	1	1	×			Field Tests - pH, EC, DO & Temp
:										1	
						~			Environme Wollongon Work Orde EW2	ntal Div g r Referen 301	nce 940
							•				
				•							
									Telephone : 02 42:	253125	:
Water Container Codes: 1	P = Unpreserved Plastic; N = Nitric Preserve	ad Plastic; CRC = Nitric Preserved	1 ORC; SH = 1	TOTAL 10 Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Pres	erved Plastic	; AG = Amber G	Blass Unprese	ved; AP - Airfreight	Unpreserved Plastic		:

V = VOA Vial HCI Preserved VB = VOA Vial Solum Bisulphate Preserved; VS = VOA Vial Solum Bisulphate Preserved; VS = VOA Vial Solum Creserved; VS = VOA Vial Solution Creserved;

CERTIFICATE OF ANALYSIS

Work Order	EW2301940	Page	: 1 of 5
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	·	Telephone	: +61 2 4225 3125
Project	: Dunmore Surface Water SWP01 Overflow	Date Samples Received	: 01-May-2023 13:38
Order number	: 147649	Date Analysis Commenced	: 01-May-2023
C-O-C number	:	Issue Date	08-May-2023 10:48
Sampler	: Michael Santos		Hac-MRA NAIA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		The Contraction of the second
No. of samples received	: 1		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Environmental Services Representative	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Sample site SWP1 was not discharging at time of sampling.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EP025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Sampli	ng date / time	01-May-2023 12:47	 	
Compound	CAS Number	LOR	Unit	EW2301940-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.6	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	1240	 	
EA015: Total Dissolved Solids dried at	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	654	 	
EA025: Total Suspended Solids dried a	t 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	9	 	
EA045: Turbidity						
Turbidity		0.1	NTU	4.5	 	
EA116: Temperature						
Temperature		0.1	°C	19.5	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	354	 	
Total Alkalinity as CaCO3		1	mg/L	354	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	43	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	168	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	59	 	
Magnesium	7439-95-4	1	mg/L	27	 	
Sodium	7440-23-5	1	mg/L	135	 	
Potassium	7440-09-7	1	mg/L	14	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	0.06	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.184	 	
Iron	7439-89-6	0.05	mg/L	0.32	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.3	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Samplii	ng date / time	01-May-2023 12:47	 	
Compound	CAS Number	LOR	Unit	EW2301940-001	 	
				Result	 	
EK055G: Ammonia as N by Discrete Analy	yser					
Ammonia as N	7664-41-7	0.01	mg/L	0.04	 	
EK055G-NH4: Ammonium as N by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.04	 	
EK057G: Nitrite as N by Discrete Analyse	ə r					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	er					
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	oy Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	12.7	 	
Ø Total Cations		0.01	meq/L	11.4	 	
Ø Ionic Balance		0.01	%	5.44	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	281	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	6.77	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

Appendix I: Calibration Certificates

number	2200	22WO	22WO	0010		22WO		22WO 1012		2WO 2013					821) 81-1	22	22	22	21/00	21/00	21/00	
Operational Limits	± 0.1	± 0.1	± 0.1	7.15-7.25		79 - 88	142 - 151	1369 - 1454	700 - 10300	12493 - 13266	108446 - 115154	/ CRM	<0.2	95 - 105%	217 - 240	S	S	SZ	± 0.09 52	± 0.10 S 2 1	± 0.14 S2	
Certified Value	7.00	4.00	10.00	pH Junction	Chk S	84	146.9	1412	10000 §	12880	11800	Chk Sto	.0mg/L	100%	229	NTU	NTU	NTU	0.24	0.95	1.63	Analyst/ Comments
Meter ID Date			pН					E	(µS/cm	2					ORP	Turt	idity (NT		Chin	rine (mo		
ALSWOLD1602 12/11/22	20.7	4.02	10-01		. 5								(% or n	ng/L)	(mV)	- un	Diolity (IN I	9	Chio	orine (mg.	Ē	1
AI SWICE - 900 00 11140.			200	ī	121																	de
ALSWOLDIN DUITO	cat	4.06	241	141	229						1											Din
ALSWOLOULA 22 11/22	7.52	3.99	10.06	7/7	12.2						S	0760	101	· C hole	0	200	1012-1	in bu	(14)			101 C
ALSWOLG732 23/11/24	698	3.90	6.98	121	24.3		-	42		120195	C		63.2 1	3					(200)			N21
ALSWOL 040 24/11/22	7.03	3.990	9.98		250:								0	0								Par C
ALSWOLO(1, 25.11.21	しい	423	10.01		23.3																	Rent
ALSWOLDER 19-11-12	5.97	4.011	90.06		8.8																	nd h
ALSWOLD 44.11.26	7.01	3.99.1	0.07	125	4.0																	Cal
ALSWOL 24 30-11.22	702	4.01 1	0.04	1-17	ð																	RUL
ALSWOLSUL Soll. 20	7.04	4.04 1	800	7.19	12.0		_															200
ALSWOLD66Q 1.12.72	7.08	4.04 1	0.07	1																		R2.
ALSWOLDDAL 1. 12.22	.05	49.6	A	1.23 2	2.0		-	1	-	1240	-		2	Ì								MAS
LSWOLDILL & D. W2	1014	3,00	1.90	0 20	5.5		2	i l	E	1010			1.0	8								Py2
LSWOL-660 2.12.2-	7.04	1.52 1	D P	3	2.0			4		100		10	2	00								pany
LSWOLD 2.12.7	1.06	424	1.95	0	27.7																	RAN
LSWOL0260 5.12.22	7.02. 4	03 60 +	10.04	1.200	101			-														RM
LSWOLD662 5.12.22	1.02 (1 co.t	- 20.0	16 1	S.A.			-														MSV
LSWOL(-7)22 5.12.21	4.4	2.22 0	00	2	2.40		-	1	~	22		、 、										8
LSWOL NUR GILVIL	702	4.021	70:0		1.2		-	f		797		2	1 . T.	2	15							PM.
LSWOLGAD G.D. IL	5.95	3 55 0	198	2	4.50		1	45	~	193			-	2	20							der.
-SWOLDON 7. R.JU					6	2 2	_	51	-			0	1	>	200	-				-		RN
LSWOL 522 7 12.26	5.97 4	t.ool	1.94	12	23		-	191	-	-			-	+	-				-			N
	1	Tix	1.14	*	1.4	-		-	_													

-

ENFM (56/4)

Page 20 of 20

Field Calibration Form

CERTIFICATE OF CALIBRATION

Issued By: Ecotec Solutions, Inc.

Serial Number: 3810912

Customer:	ANRI Instruments & Controls		
www.ecotecco.com			
Colton, CA 92324 909-906-1001		Certificate #:	202215023810912
850 S Via Lata, Suite 1	115	Recommended Calibration:	February 15, 2024

Calibration Date:

February 15, 2022

Calibration Results: The analyzer is considered to be in conformity with the specifications of reference.

Units	Gas	Certified Gas Concentration	Gas Traceability (Lot Number)	Instrument Reading	Tolerance
%	N ₂	99.999	N70086009803	0.2 PPM	5 PPM
PPM	CH ₄	10.0 PPM	70086129308	9.9 PPM	± 10%
PPM	CH ₄	500 PPM	70086030712	488.5 PPM	± 10%
PPM	CH4	2498 PPM	70086811308	2607.3 PPM	± 10%
PPM	CH ₄	10000 PPM	109631206	10077.9 PPM	± 10%
PPM	CH ₄	20000 PPM	109631303	20002.7 PPM	± 10%
PPM	CH ₄	999700 PPM	MET-040918-UHP	1003150 PPM	± 10%

Calibration Technician: Jose Munoz

Signature:

Date: February 15, 2022

This certificate is issued in accordance with laboratory requirements of the National Institute of Standards and Technology. It provides traceability of measurement to recognized national standards, and to units of measurement realized a t the National Institute of Standards and Technology or other recognized national standards laboratories. Certification only applies to results shown. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Page 1 of 1

ECOTEC Solutions, Inc. Instrument Services Facility | 850 South Via Lata #115, Colton, CA 92324 | +1 (909) 906 1001

www.gazomat.com www.ecotecco.com

a
F
⋗
D
9
Ó
<
Ð
0
••
-
(J)
0
0
N
õ
N
0

1	υ
\$	U
Q	2
0	D
-	-
C	5
-2	4

	>	3	74		000							0										
Standard or Batch number	23WO 000	23WO 000	23WO	230	22W 22U 22W	22WO		22WO		001	2200	130			128	522	522	522	521/00	21/00	21/00	
Operational Limits	± 0.1	± 0.1	± 0.1	7.15-7.25	td / CRM	79 - 88	142 - 151	1369 - 1454	9700 - 10300	12493 - 13266	108446 - 115154	d / CRM	<0.2	95 - 105%	217 - 240			5	± 0.09	± 0.10	± 0.14 1	
Certified Value	7.00	4.00	10.00	pH Junction	Chk S	84	146.9	1412	10000	12880	111800	Chk S	0.0mg/L	100%	229	NTU	NTU	NTU	0.24	0.95	1.63	Analyst/ Comments
Meter ID Date			рн					E	C (µS/cn	n)			(% or r	ng/L)	(mV)	Turb	idity (NT	S	Chlo	rine (mg/	Ľ	4
LSWOL 060 17.2.23	7.03	4.02	85.6		7.04					Pink	E E				•							L 27
LSWOL OUL 20 2.23	7:02	4.01	5.45	7.17	7:04					12470		100	8	21910	bar	500	5	12 - 4	L			10 14
LSWOLS732 202.20	7.55	4.03	20.0	7.10	704			1419		R.	R	Sol C	202	102		1714	(ALCO IN		-	RM.
LSWOLD/12,21.2,20	703	4.3	9.48	7.21	S.r.															-		1 28
15W01022 212.27	Ser	40	10.00		Jos															N	X	M 27
LSWOLCELA 22-2-23	7.04	4.01	10.01	7.19	7.04				G	130	S	1. Chel	7 h Pa	· 102	1.4	h Pa	C	3	27			MSM
LSWOLUTY 22.2.22	7.03	4.3	10.02		2.2			HAN1		12910		A	2.0	102								
LSWOLD660 23-2-23	2.05	4.02	0.02	7.21	7.06	÷			O,	1302.	w 100	022.71	nP~	ORO	C	1020	4	23	1		T	C 21-3
LSWOLGIY 23.2.2.5 (6.96	4.02	10:05		7.03			1400		0000			5	ion							*	son
LSWOLD20 23-2.7.2	7.06	4-04	10.04		Job											_						Rin
LSWOLOGG 24.2.23	7.04	4.02	0.04	7.21	1.06																7	15 22-2
LSWOLDA LADID	7.06	4.04	5.0		7.00																R	201 20
LSWOLD C 24 2 2	7.00	4.00	0.01	7.20	5																	m
LSWOID/41 77 - 2-23	7.01	10.4	50.02	1.18	50.1																	MS 23.5
LSWOLD 20 17. 2.27	7.01	4.3	0.0	7.16	1.0.	1															~ 0	Arr
LSWOLDGUL 78-2-27	102	4.04	10.05		JC.C							0790	2000	1010	.650	0	30 (L P	2	1 1 21
LSWOL ()) 28.1.1)	101	4.04	80.0	7.16	6.99			403	12	Sol	Ĩ4	01	ř	0	020					TA IN	8	201
LSWOL DU 1. 3 - 23 -	7.04	4.04	0.03	7.21	7.04							_										MR 25
LSWOL 673 2-1-3,23	6.96	84.6	0.03		6.95															_	Ø	DL
LSWOL DUR 1.3.2) (6.4	4.8	6.9		6.94																2	DL 1
LSWOLD LAN 2.3.1.7	1.02	4.03	10.02		t ^a .C							**								-		16-27.0

ENFM (56/4)

Standad or Belch Contineer Standad or Belch			1 100	and a	-																		
Operational Limits Continue Value 7.00 ± 0.1 serve_GV2 3/3/2 7.4 - <t< th=""><th>Standard or Batch number 23WO</th><th>000</th><th>0003</th><th>0004</th><th>1000 (</th><th>230</th><th>22WO</th><th></th><th>22WO</th><th></th><th>2WO</th><th>692</th><th>1010</th><th>_</th><th>521</th><th>22</th><th>22</th><th>22</th><th>21/00</th><th>21/00</th><th>21/00</th><th></th><th></th></t<>	Standard or Batch number 23WO	000	0003	0004	1000 (230	22WO		22WO		2WO	692	1010	_	521	22	22	22	21/00	21/00	21/00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Operational Limits	± 0.1	± 0.1	± 0.1	7.15-7.25	td / CRM	79 - 88	142 - 151	1369 - 1454	9700 - 10300	12493 - 13266	108446 - 115154	d / CRM	<0.2	95 - 105%	217 - 240 (S	s	s	± 0.09 1	± 0.10 1	± 0.14 1	
Meter ID D Page pH EC (μ S(m)) DO (μ or mgL) OR (μ or mgL) Turbidity (NTU) swore $\alpha_{0,0}$ 2, μ or	Certified Value	7.00	4.00	10.00	pH Junction	Chk S	84	146.9	1412	10000	12880	111800	Chk St).0mg/L	100%	229	NTU	NTU	NTU	0.24	0.95	1.63	Analyst/ comments
smouthand The Heat <	Meter ID 22 1/2/2			PH					E	(µS/cm)				C DO		ORP	Turbid	ty (NTU)	-	Chlorin	e (mg/L)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LSWOLIDER 2417E 7.	00 4	102 0	24.42		7.06			1438		2990		~	2.0	00		_	-	-	-	_		RMC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LSWOL UNDE 2 1472	-											_		2	8	+	_	+	+	-		2 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSWOL6662313123 7.0	24	10	0.00	3.20	1:05							_		2	-	+	+	+	+			120 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSWOLODUL 3/3/22 7.	24	1 10.	0.0	1.17	201					_	_	_	-	_	+	-	-	-	-			242
	LSW010668613123 7.5	3 4	03 10	- 10.0	7-19	7.04							4	_	+	+	-	+	-	-	+	+	RVU
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSWOLD 13/13 7:0	224	02 10	60.1		1.04					_		+	-	+	-	+	+	+	-	+	+	Nº. 2
	LSWOLCHR 7/5/23 AC	84	100 9	i'ra		7.65			1412		400 A	ホー	t	-	_	-	-		+	+	-	2	N NO
smoling given rate	12MOLUNG 212/25 1-0	22 4	1) 0	10.0		701							_		_	-	+	-		+	-	5	10
$ \frac{8W0LQ32}{8W0LQ32} \frac{(1)}{(1)} \frac{13}{123} \frac{1.01}{10} \frac{1.02}{10.04} \frac{1.004}{10.04} \frac{1.007}{10} \frac{1.007}{10} \frac{1.071}{10} \frac{(0.04)}{10} \frac{1.007}{10} 1.00$	LSWOLD260 8/3/23 7.0	1 00	01 0	38	1	7.03			46	12	0180	iL	20		-	-	-	+	+	+	+	2	Prin a
$\frac{1}{12} \frac{1}{12} \frac$	LSWOLDON TIS 12 1/1	10	1 70.	.94		20.1													-	-	_	2	15 28.0
$ \frac{1}{28001000} \frac{1}{13} \frac{1}{23} \frac{1}{23} \frac{1}{23} \frac{1}{100} \frac{1}{1000} $		V	2	x c	4	2			}		,		2	-	-		-	-				de	26.2
$ \frac{\text{swol} 224}{\text{swol} 4.3,23} = 1 + 0210.60 + 24 + 1417 + 12840 + 1424 + 1423 + 12840 + 1424 + 1433 + 12840 + 1424 + 1437 + 12840 + 1424 + 1437 + 12840 + 1424 + 1437 + 12840 + 1424 + 1437 + 12840 + 1424 + 1437 + 12840 + 1424 + 1437 + 14$	LSWOLDY CITY TI	54	· · · ·	0.04	ñ	10.01			An	6969	50	0	C	s j	1008.	8620	2 60-	13000	C C	\square	$\left \right $	24	Ly Celes
$ \frac{smol 044}{10} \frac{10}{9} \cdot 3.13}{7 \cdot 1} \frac{1}{9} \cdot 02 \frac{10}{10} \frac{10}{10} \frac{1}{10}	LSWOP262 9.3.23						64		イ (ナ)		1540	1	04	1	0	+	+	+	+	+	+		Kny
$ \frac{133.23}{1000} \frac{133.23}{100} \frac{133.23}{1000} \frac{133.23}{10000} \frac{133.23}{10000} \frac{133.23}{100000} \frac{133.23}{100000} \frac{133.23}{1000000} \frac{133.23}{100000000} \frac{133.23}{1000000000} \frac{133.23}{10000000000} \frac{133.23}{10000000000000} \frac{133.23}{1000000000000000000000000000000000000$	LSWOL 0400 8-3.23 7.0	24	0210	8		ion	NOW	hecic	Std.	200-	the of	2	2110	50	- 1	3	+	-	+	+	+	R	5 245
$\frac{14}{12} = 12323 = $	LSWOLCGO 3.3.23 7 3	4	.SZ 10	és	,					1	101	4		0011	-				+		+	12	Nr. ZH C
$ \frac{1}{100} \frac{1}{202} \frac{1}{10} \frac{1}{3} \frac{1}{10}$	LSWOLG7 Q 13.3.23	_						-	Ast	100	5	-		_	+	+			-			R	SUL
MOLGING H. 5.13 7.02 H. 01 1.02 MOLGING H. 5.13 7.02 H. 01 10.01 1.03 MOLGING 14.3.23 7.04 4.03 10.04 7.14 7.05 MOLGING 14.3.23 7.04 4.03 10.04 7.14 7.05 1438 12800 MOLGING 14.3.23 10.94 4.01 10.04 7.14 7.05 1438 12800 MOLGING 14.3.23 10.04 10.05 1.438 12810 1412	LSWOLDD 17.3.17 7.5	A	CX XC	j.	5	2			e	1	NOD	Ŧ	0		-	+				-		6	1-1
MOLDER 14.3.23 7.04 4.03 10.04 7.14 7.05 1428 2603 1408 12.803 1408 14.3.23 6.99 4.01 10.04 6.77 855 1428 12810 1412 1408	SWOLD & H. S. 13 7.0	5	0 10	0	N	1.03		_		-	+	-	-	-	-	+		+	+		-	R	in
MOLOGG 14-3.23 6.99 4.01 10.04 6.77 85 1418 120 1412 1412	SWOLDER 14.3.13 7.0	A A	3	0	C 19-0	is s			478	1	1	Ā	X	+	-	+		+	-			MS	22.20
WOLA66 15 5:28 70 2 4 01 10.03 7 16 7.02	SWOLD662 14-3.23 6.9	4 4	01 10	49.	6	26.97	65		418	110	5 (1	5 6	-	+	+		+	+	+	+	Nel	23.3
	SWOL 046 15 .5.25 70	5 4	01 10	5.7	. 16 >	102			-			1		+	+		+	+	1	t	+	N	Wers

Data Annual . Ar incinen

Page 20 of 20

Field Calibration Form

		i -		j		_	ļ		6		_				_				_			_			_
		Comments		RAL /163	Ful	Pul	Rin	M5 / 12.79	Rul 15.	MS 16.20	MS/16. PC	MS/15.89	-	Par /	Port	RNN	RN	Rnc	RUL	SW	SW	5W	MS	ROL	MG
۱ ۲۱/۵۵	41.0±	£9.1	(T)												.)	3									
۱ 221/00	01.0±.	96.0	rine (mg												24	015									
۱ 251/00	60.0 ±	0.24	Chlo													3									
		υти	n)				a.		Ģ.						5	mber									
		ОТИ,	idity (NT									(()		VC	9450						-			
		υти	Turb										IN.I			6	9								
	212 - 240	529	ORP (mV)										101			2								1	
	%90L - 96	%00L	(T/bu				102.6						3)2.	105	101	105									
	2.0>	J\gm0.0	D(% or I				2.05		14				104	7.0%	202	2.07						+			
2100	NA) / DRM	S AND			1446	145	450							45	435	c5+1	1432	1431					1440		
	- 944801 115154	008111					-																		
BOC	13266 12493 -	12880	(Ostel	13280	(132(1))							0900	0550	120180	3210	13400					12880		
	00601 - 0076	00001	C (µS/cn		-																				
2200	1369 - 1454	2141	Ш		144	1415	1412							M17	44	1418	14500	1418					1410		
	142 - 151	6.941			6																				
S3WO	88 - 62	84																							
001	td / CRM	S XYO		7.04		7.55	7.05	7.05	7:07	3.05	7.06	T.O.T	6.97	702	7.08.	40.6	7.02	1.05	7.05	7.02	7.05	7.06	7.03	20.0	30.E
290	32.7-31.7	Hq noitonu		07.6		1.2								7.13	97.6	1.22		1.2	ter	7.18					7.24
004	r.0±	00.01	펍	0.01		01.01	10.01	80.0	10.04	io.io	0.04	80.01	10.01	10.01	0.01	Cc-01	60.01	10.01	90.00	10.06	10.06	10-08	10.07	90.01	10.07
000	r.0±	4.00		10.4		4.00	65.5	10.4	1.2%	1.00	1.02	10.4	10.4	F-04	4.04	4.4	165	4.02	dit.	4.00	4.00	4.92	4.00	10.4	ho.t
00	ŀ.0± .	00.7	1.0.1	tot		tor	7.55	7.06	Ce C	7.06	7.05	7.06	0-96	tor	7 08	2.4	10.t	20.L	2000	7.03	7.06	7.05	7.03	90.6	2.05
or Batch ber	al Limits	I Value	Date	19-5.23	19-5.23	CT:5-51	22.5.2	23-523	23.5.23	23-5-23	24.6-23	62-9-97	27.6-23	313.2	0.5.10	57.9.1	5.6.23	5.6.23	5 6.23	6-6-23	7.6.23	8,6-23	B. 6 . 23	51.9.41	62.0.23
Standard num	Operation	Certified	Meter ID	ALSWOLOGO	ALSWOLD AN	ALSWOLOTZU	ALSWOLJOOL	ALSWOLD666	ALSWOLO22	ALSWOLD2% G	ALSWOL	ALSWOLOG	ALSWOLODEC	ALSWOLOT	ALSWOLJOUL	ALSWOLO7	ALSWOLDZEG	ALSWOLON	ALSWOLOV()	ALSWOLP26	ALSWOLD26	ALSWOLD 66	ALSWOLD 2 6	ALSWOLD?6	ALSWOLDL

Page 1 of 1

Date Approved : 15/06/2020

ENFM (56/4)

Gas Verification Certificate

Instrument	Huber Laser
Serial No.	19255.18
Sensors	Laser

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass		Co	mments	
Battery	Charge Condition	1				
	Fuses	1				
	Capacity	1				
	Recharge OK?	1				
Switch/keypad	Operation	1				
Display	Intensity	1				
	Operation (segments)	1				
Grill Filter	Condition	1				
	Seal	1				
Pump	Operation					
1000	Filter					
	Flow					
	Valves, Diaphragm					
PCB	Condition	1				
Connectors	Condition	1				
			Low	High	TWA	STEL
Sensor	Laser	1				
		1				
		1				
		1				
				-		
Alarms	Beeper	1				
	Settings	1				
Software	Version					
Datalogger	Operation					
Download	Operation					
Other tests:						

Bump Test Certification This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode	Aspirated mode				
Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
CH4		500ppm CH4	NIST	sy460	500 ppm CH4
CH4		2.5 % vol CH4	NIST	BC363930	2.5 % vol CH4
					L.

Bump Test by:

Jemma Treseder

Date:

9/8/23

CERTIFICATION **OF CALIBRATION**

Serial Number

Issued by: QED Environmental Systems Ltd.

Calibration certificate number

Instrument

Laser One

19255 H-09418

19255

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from 0-1000ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	0.0	0	0	0	0.00	0.00	0.00	0.00
1000	2.91	3	3	3	3.00	0.09	0.01	0.01
1000	10.3	10.3	10.3	10.3	10.30	0.00	0.00	0.00
1000	101.0	101	101	101	101.00	0.00	0.00	0.00
1000	1004	1000	1000	1000	1000.00	4.00	0.40	0.40
						Uncertainty	0.40	%
						Max % error	0.40	% FS

Gas verificatio	n from	0-100% vol CH4
Gas vermeatio	ii ii oiii	0-100/0 001 0114

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.20	2.20	2.20	2.20	2.20	0.00	0.00	0.00
100.00	5.00	5.00	5.00	5.00	5.00	0.00	0.00	0.00
100.00	15.00	15.00	15.00	15.00	15.00	0.00	0.00	0.00
100.00	50.00	49.90	49.90	49.90	49.90	0.10	0.10	0.10
100.00	100.00	100.00	100.00	100.00	100.00	0.00	0.00	0.00
						Uncertainty	0.10	%

Uncertainty Max % error 0.10

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.00	2.00	2.00	2.00	2.00	0.00	0.00	0.00
100.00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00

Uncertainty	0.00	%
Max % error	0.00	% FS

% FS

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Page 1 of 2

CERTIFICATION **OF CALIBRATION**

Issued by: QED Environmental Systems Ltd.

Environmental conditions during calibration

Temp.	18.5	С	
Pressure	977	mBar	

Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas	
N2	S1261680T	16/05/2024	N2	
3 ppm	pm 292675 17/08/20		CH4	
10 ppm	119779SG	11/04/2024	CH4	
100 ppm	S1729157	08/03/2028	CH4	
1000 ppm	S1147710R	03/01/2028	CH4	
1.0% Vol	1.0% Vol \$11984155		CH4	
2.2% vol	1713254	13/12/2027	CH4	
5.0% vol	217147	03/12/2024	CH4	
15% vol	vol 269223 07/11/2023		CH4	
50% vol	189051SG 23/02/2024		CH4	
100% vol	S1182097S	15/11/2025	CH4	

Calibration results: Pass

Next scheduled calibration: 03/04/2024

Calibration date: 03/04/2023

Issued by: Keeley Knight

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Page 2 of 2 Registered in England and Wales 1898734

Appendix J: Gas Flare Reports

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

23.4 million m3

CARBON ABATEMENT

222 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.7 million seedlings planted for 10 years (t CO2e)

6.093 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	14/11/2022
Report month:	October 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jessica North

Comments on	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.					
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.					
system:	• June 2016 - LGI disconnected the extended gas capture system to assist council.					
	• September 2016 - LGI disconnected the extended gas capture system to assist council.					
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of 					
	23-11-2016.					
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system					
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure					
	that had been previously disconnected, including 4 wells on the dimple and a 160mm					
	leachate riser.					
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection. 					
	 February 2021 - LGI installed 13 new vertical wells, including a new submain 					
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser					
	for greater accuracy and reliability					
	August 2022 - LGI repaired the 225mm mainline and adjacent submain to allow for					
	intermediate capping to continue across the top of cell 3					
Comments on	Availability - 99.38%					
operation /	Down Time: 4.58hrs					
maintenance:						
	Field Tuned:					
	- 31/10/2022					
Recommendations:	After discussion with Council, LGI will re investigate options for leachate pumping out of					
	gas extraction wells					

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
10/10/2022	37.1	27.2	0.3	320	769	23,176,716
18/10/2022	36	-	1	357	614	23,243,922
26/10/2022	41.1	29.7	0.1	327	662	23,311,015
31/10/2022	39.2	26.4	0.1	392	767	23,355,257
Average	38.35	27.77	0.37	349	703	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Date

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

- 23,360,830 of combusted landfill gas up to 1 November 2022, which represents;

- 221,872 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,697,864 seedlings planted for 10 years
- 6,093 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

23.6 million m3

CARBON ABATEMENT

224 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.7 million seedlings planted for 10 years (t CO2e)

6.091 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	16/12/2022
Report month:	November 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Thomas Schnatz

• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.					
• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.					
: • June 2016 - LGI disconnected the extended gas capture system to assist council.					
• September 2016 - LGI disconnected the extended gas capture system to assist cou					
• November 2016 - LGI commissioned the connection to leachate sump 6 as of					
23-11-2016.					
• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system					
• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure					
that had been previously disconnected, including 4 wells on the dimple and a 160mm					
leachate riser.					
 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection. 					
• February 2021 - LGI installed 13 new vertical wells, including a new submain					
• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser					
for greater accuracy and reliability					
August 2022 - LGI repaired the 225mm mainline and and adjacent sub main to allow for					
intermediate capping to continue across the top of cell 3					
Availability - 100.00%					
Down Time: 0.00hrs					
Field Tuned:					
- 30/11/2022					
After discussion with Council, LGI will re investigate options for leachate pumping out of					
gas extraction wells					

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
07/11/2022	35.5	25.7	0.1	380	697	23,419,647
16/11/2022	35	-	0	375	667	23,501,523
24/11/2022	35.8	25	0.5	370	645	23,573,405
30/11/2022	36.2	25.4	0.1	364	730	23,625,627
Average	35.625	25.37	0.175	372	685	-

Dunmore- Methane, Carbon Dioxide & Oxygen

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

- 23,631,365 of combusted landfill gas up to 1 December 2022, which represents;

- 224,441 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,740,688 seedlings planted for 10 years
- 6,091 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

23.9 million m3

CARBON ABATEMENT

227 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.8 million seedlings planted for 10 years (t CO2e)

6.139 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Site:	Dunmore	Report issue date:	16/01/2022
Report month:	December 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Thomas Schnatz

Comments on	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	 June 2016 - LGI disconnected the extended gas capture system to assist council.
	• September 2016 - LGI disconnected the extended gas capture system to assist council.
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	 May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	 February 2021 - LGI installed 13 new vertical wells, including a new submain
	 March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
	- December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
	reliability of condensate management in the main gas line.
Comments on	Availability - 100.00%
operation /	Down Time: 0.00hrs
maintenance:	
	Field Tuned:
	- 22/12/2022
Recommendations:	After discussion with Council, LGI will re investigate options for leachate pumping out of
	gas extraction wells

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
08/12/2022	-	-	1	346	755	23,693,447
15/12/2022	-	-	1	341	755	23,752,988
22/12/2022	39.9	26.6	0.2	363	771	23,811,530
27/12/2022	34	-	1	355	718	-
Average	36.95	26.6	0.8	351	750	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Date

BIOGAS MONTHLY REPORT - DUNMORE

$rac{25,000,00}{20,000,000}$ $rac{15,000,000}{5,000,000}$ $rac{10,000,000}{5,000,000}$ $rac{10,000,000}{2016}$ $rac{10,000,000}{2016}$ $rac{10,000,000}{2016}$ $rac{10,000,000}{2016}$ $rac{10,000,000}{2016}$ $rac{10,000,000}{2016}$

Dunmore - Cumulative Flow

- 23,893,596 of combusted landfill gas up to 1 January 2023, which represents;

- 226,932 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,782,197 seedlings planted for 10 years
- 6,139 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

24.2 million m3

CARBON ABATEMENT

229 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.8 million seedlings planted for 10 years (t CO2e)

6.214 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 57 Harvey Street N, Eagle Farm QLD 4009

Site:	Dunmore	Report issue date:	17/02/2022
Report month:	January 2023	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Matthew Tap

O amonto ant	
Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist council.
	• September 2016 - LGI disconnected the extended gas capture system to assist council.
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	 May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	 February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	August 2022 - LGI repaired the 225mm mainline and and adjacent sub main to allow for
	intermediate capping to continue across the top of cell 3
	- December 2022 - LGI installed a pneumatic bore pump in a J-trap, allowing for greater
	reliability of condensate management in the main gas line.
Comments on	Availability - 100.00%
operation /	Down Time: 0.00hrs
maintenance:	
	Field Tuned:
	- 24/01/2023
Recommendations:	After discussion with Council, LGI will re investigate options for leachate pumping out of
	gas extraction wells

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
04/01/2023	35	-	1	346	769	23,924,491
11/01/2023	35	-	1	350	749	23,981,011
24/01/2023	38.3	29.3	1.6	416	870	24,089,024
Average	36.1	29.3	1.2	371	796	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Date

BIOGAS MONTHLY REPORT - DUNMORE

25,000,000 20,000,000 15,000,000 5,000,000 0 2016 2018 2020 2022

Dunmore - Cumulative Flow

Year

- 24,156,649 of combusted landfill gas up to 1 February 2023, which represents;

- 229,430 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,823,836 seedlings planted for 10 years
- 6,214 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Page 4 of 5

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

LGI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

24.4 million m3

CARBON ABATEMENT

232 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.9 million seedlings planted for 10 years (t CO2e)

6.229 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Site:	Dunmore	Report issue date:	17/03/2023
Report month:	February 2023	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Thomas Schnatz

Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist council.
	• September 2016 - LGI disconnected the extended gas capture system to assist council.
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	 May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a jtrap, allowing for greater
	reliability of condensate management in the main gas line.
Comments on	Availability - 95.92%
operation /	Down Time: 27.42hrs
maintenance:	23.75hrs - Forced Outage Internal - internal equipment fault
	3.58 hrs - Planned outage - equipment repairs
	Field Tuned:
	- 24/02/2023
Recommendations:	After discussion with Council, LGI will re investigate options for leachate pumping out of
	gas extraction wells

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
24/02/2023	40.6	26.5	0.2	350	790	24,335,619
Average	40.6	26.5	0.2	350	790	-

BIOGAS MONTHLY REPORT - DUNMORE

$rac{25,000,00}{20,000,00}$ $rac{15,000,000}{5,000,000}$ $rac{10}{216}$ $rac{10}{218}$ $rac{10}{202}$ $rac{10}{202}$

Dunmore - Cumulative Flow

- 24,378,789 of combusted landfill gas up to 1 March 2023, which represents;

- 231,540 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,859,000 seedlings planted for 10 years
- 6,229 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

LGI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

24.6 million m3

CARBON ABATEMENT

234 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.9 million seedlings planted for 10 years (t CO2e)

6.304 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Site:	Dunmore	Report issue date:	18/04/2023
Report month:	March 2023	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jarryd Doran

Comments on	 January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	 June 2016 - LGI disconnected the extended gas capture system to assist council.
	• September 2016 - LGI disconnected the extended gas capture system to assist council.
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	 May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent sub main to allow for
	intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a jtrap, allowing for greater
	reliability of condensate management in the main gas line.
Comments on	Availability - 100.00%
operation /	Down Time: 0.00hrs
maintenance:	
	Field Tuned:
	- 01/03/2023
	- 31/03/2023
Recommendations:	After discussion with Council, LGI will re-investigate options for leachate pumping out of
	gas extraction wells. We anticipate being on site to upgrade leachate infrastructure in May
	2023.

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
01/03/2023	40.0	26.8	0.2	377	682	24,383,436
10/03/2023	34.0	-	0	373	615	24,462,664
16/03/2023	38.0	-	0	342	696	24,514,505
31/03/2023	39.6	30.1	0.4	358	700	24,642,826
Average	37.9	28.45	0.15	363	673	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.

Dunmore - Flow Rate

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

- 24,647,231 of combusted landfill gas up to 1 April 2023, which represents;

- 234,090 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,901,492 seedlings planted for 10 years
- 6,304 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement.

Results achieved since project commencement*

BIOGAS CAPTURED

25.2 million m³

CARBON ABATEMENT 239 thousand tonnes benefit)

ACCUs CREATED

92 thousand (t CO₂e - environmental Australian Carbon Credit seedlings planted for 10 Units (ACCUs)

SEEDLINGS PLANTED

4 million years (t CO_2e)

CARS OFF THE ROAD

6.467 for the last 12 months of carbon abatement $(t CO_2 e)$

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional • landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) ۲ from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Site: Dunmore		Report issue date:	14/06/2023
Report month:	May 2023	Prepared by:	V McKay
Prepared for:	Shellharbour City Council	Checked by:	T Schnatz

Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.			
changes to existing	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells. 			
system:	• June 2016 - LGI disconnected the extended gas capture system to assist Council.			
	• September 2016 - LGI disconnected the extended gas capture system to assist Council.			
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of			
	23-11-2016.			
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system			
	• November 2019 - LGI on site to move mainline up batter, and reconnected			
	infrastructure that had been previously disconnected, including 4 wells on the dimple and			
	a 160mm leachate riser.			
	• April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.			
	• February 2021 - LGI installed 13 new vertical wells, including a new submain			
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser			
	for greater accuracy and reliability			
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for			
	intermediate capping to continue across the top of cell 3			
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater			
	reliability of condensate management in the main gas line.			
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with			
	evacuated leachate being returned into sump 5.			
Comments on	Availability - 99.83 %			
operation /	Down Time: 1.25 h			
maintenance:	1.25 h - Planned maintenance			
	Field Tuned:			
	- 30/05/2023			
Recommendations	LGL recommends continued regular communication with Council regarding leachate			
	management site performance and future planning			
	management, elle performanee, una latare planning.			

FLARE OPERATIONAL DATA (based upon on-site technical readings):

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
11/05/2023	-	-	-	360	580	24,991,860
18/05/2023	-	-	-	356.9	609	25,052,697
23/05/2023	34	-	-	359	591	25,099,144
29/05/2023	34.2	27.9	0.5	521	969	25,148,776
Average	34.1	27.9	0.5	399	687	-

Note: Infrastructure damage on 02/09/2022 resulted in oxygen ingress into the field

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009

07 3711 2225

25,176,026 m³ of combusted landfill gas up to 1 June 2023, which represents;

- 239,112 tonnes of CO₂ equivalent (total methane abated by gas capture system to date).
- 3,985,197 seedlings planted for 10 years
- 6,467 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We are people engineering a clean energy, zero carbon future, achieving our mission of expediting the transformation to renewables by delivering clean energy and lower carbon solutions, reliably, effectively, commercially for our customers.

To achieve our vision and mission we put people first and this makes us different from all the rest.

Results achieved since project commencement*

BIOGAS CAPTURED

25.4 million m³

241 thousand tonnes (t CO₂-e - environmental benefit)

CARBON ABATEMENT

ACCUs CREATED

92 thousand Australian Carbon Credit Units (ACCUs)

4 million

seedlings planted for

10 years (t CO₂-e)

SEEDLINGS PLANTED CARS OFF THE ROAD

6,388 for the last 12 months of carbon abatement (t CO₂-e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its **30% baseline**) from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Site: Dunmore		Report issue date:	12/07/2023
Report month:	June 2023	Prepared by:	V McKay
Prepared for:	Shellharbour City Council	Checked by:	T Schnatz

Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist Council.
	• September 2016 - LGI disconnected the extended gas capture system to assist Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected
	infrastructure that had been previously disconnected, including 4 wells on the dimple and
	a 160mm leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
	reliability of condensate management in the main gas line.
	• May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
Comments on	Availability - 84.99 %
operation /	Down Time: 108.08 h
maintenance:	0.17 h - Planned maintenance (attempted TC repair)
	53.58 h - Forced outage external (mains failure)
	54.33 h - Forced outage internal (TC fault)
	Field tuned:
	- 01/06/2023
	- 10/06/2023
	- 30/06/2023
Recommendations:	LGI recommends continued regular communication with Council regarding leachate
	management, site performance and future planning.

FLARE OPERATIONAL DATA (based upon on-site technical readings):

Date	CH₄ (%v/v)	CO ₂ (%v/v)	O ₂ (%v/v)	FLOW (m³/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m ³)
10/06/2023	37.1	27.3	0.6	345	711	25,270,471
16/06/2023	31.0	-	-	328	650	25,314,777
27/06/2023	33.3	25.0	1.8	322	636	25,383,280
30/06/2023	39.7	30.6	0.9	284	648	25,396,318
Average	35.3	27.6	1.1	320	661	-

Note: Infrastructure damage on 02/09/2022 resulted in oxygen ingress into the field

25,400,015 m³ of combusted landfill gas from the beginning of the project up to 1 July 2023 represents:

- 241,239 tonnes of CO₂ equivalent (total methane abated by gas capture system to date).
- 4,020,653 seedlings planted for 10 years
- 6,388 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

Total biogas captured in the 2023 financial year (23FY Qlfg): 3,114,331 m³

Total carbon abatement from biogas captured in the 2023 financial year (23FY): 29,579 t CO₂-e

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

LGI PEOPLE ENGINEERING A CLEAN ENERGY, ZERO CARBON FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

26.3 million m3

CARBON ABATEMENT

250 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units (ACCUs)

SEEDLINGS PLANTED CARS OFF THE ROAD

6.017 for the last 12 months of carbon abatement (t CO2e)

4.2 million seedlings planted for 10 years (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI has installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Site:	Dunmore	more Report issue date: 7	
Report month:	October 2023	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

Comments on	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist Council.
-	• September 2016 - LGI disconnected the extended gas capture system to assist Council.
	• November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	 May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	 February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	• August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
	• December 2022 - LGI installed a pneumatic bore pump in a j-trap, allowing for greater
	reliability of condensate management in the main gas line.
	 May 2023 - LGI installed a series of 3 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	 June 2023 - LGI installed a series of 2 pneumatic bore pumps at various wells with
	evacuated leachate being returned into sump 5.
	- October 2023 - LGI replaced the flare with a brand new flare of identical capacity. The
	new flare has improved control systems, reliability and performance, and will be compliant
	with current Type B Gas and Hazardous Area Zoning regulations.
Comments on	Availability - 82.27 %
operation /	Down Time: 131.92 h
maintenance:	
	32h - Planned Outage
	99.92h - Forced Outage External
	Field tuned:
	- 04/10/2023
	- 16/10/2023
	- 26/10/2023
	- 27/10/2023
Recommendations:	LGI recommends continued regular communication with Council regarding leachate
	management, site performance and future planning.

Flare Operational Data:

Date	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	FLOW (m3/h)	STACK TEMP (°C)	CUMULATIVE FLOW (m3)
04/10/2023	31.1	28.1	1.4	388	710	26,109,567
07/10/2023	33.1	30.7	-	359	538	13,480,830
20/10/2023	-	-	-	380	715	13,582,154
21/10/2023	31.8	-	-	350	629	26,230,880
Average	32.0	29.4	1.4	369	648	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Damaged infrastructure on 02/09/2022 has allowed an influx of oxygen into the field causing readings of high O2 and low CH4.

Dunmore - Flow Rate

Dunmore - Cumulative Flow

26,293,928 m3 of combusted landfill gas from the beginning of the project up to 1 November 2023 represents:

- 249,729 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 4,162,154 seedlings planted for 10 years
- 6,017 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units (ACCUs)

Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.