

ANNUAL ENVIRONMENTAL MONITORING REPORT (AEMR) 2021-2022

DUNMORE RECYCLING & WASTE DEPOT 44 BUCKLEYS ROAD, DUNMORE, NSW, 2529

ENVIRONMENT PROTECTION LICENCE (EPL) 5984

Prepared For:Shellharbour City CouncilProject Number:ENRS0033Date:November 2022

ENVIRONMENT & NATURAL RESOURCE SOLUTIONS108 Jerry Bailey Road, Shoalhaven Heads, NSWT02 4448 5490ABN68 600 154 596WWW.ENRS.COM.AU

COMMERCIAL IN CONFIDENCE

This document has been prepared consistent with accepted scientific practice, supported by available data and resource conditions, as determined by limited data acquisition during the assessment period, evident at the site at the time. The designated recipients of this report accept all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using the results of the interpretation, the data, and any information or conclusions drawn from it, whether or not caused by any negligent act or omission. To the maximum permitted by law, *ENRS Pty Ltd* excludes all liability to any person or identity, arising directly or indirectly from using the information or material contained herein.

INTELLECTUAL PROPERTY LAWS PROTECT THIS DOCUMENT

Copyright in the material provided in this document is owned by *ENRS Pty Ltd,* and third parties may only use the information in the ways described in this legal notice:

- Temporary copies may be generated, necessary to review the data.
- A single copy may be copied for research or personal use.
- The documents may not be changed, nor any part removed including copyright notice.
- Request in writing is required for any variation to the above.
- An acknowledgement to the source of any data published from this document is mandatory.

ACKNOWLEDGEMENTS

The project was conducted through close liaison with Shellharbour City Council (SCC) and ALS Environmental.

Author and Document Control

Written/Submitted by:Reviewed / Approved by:UsedUsedUsedUsedTaite Beeston (BSc.)
Geologist & Environmental ConsultantRohan Last (BSc. MSc)
Hydrogeologist & Environmental Scientist

Record of Distribution

Copies	Report No. & Title	Status	Date	Prepared for:
1 x PDF	202210_ENRS0033r1e1_SCC Dunmore AEMR	Rev.1	25 th Nov. 2022	ALS c/- Shellharbour City Council (SCC)

EXECUTIVE SUMMARY

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Annual Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (*herein referred to as the Site*).

This (AEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the 2021-2022 monitoring period, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

The objectives of this AEMR are to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;

- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in an Annual Environmental Monitoring Report.

The scope of work for this AEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the 2021-2022 monitoring period in regard to the following tasks:

- Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- > Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- Review all quarterly environmental monitoring reports from the 2020 reporting period and available data from the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

Based on the findings obtained during the 2021-2022 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-12r, BH-13, BH-14, BH-15, BH-19r, BH-21 and BH-22. This was considered to be consistent with historical values;
- Offsite sample locations within Rocklow Creek generally reported satisfactory results. Exceedances for ammonia were recorded in some offsite surface water samples associated with Rocklow Creek, specifically samples SWC-down 14/09/2021, SWC_Down 07/12/2021, SWC_2 10/03/2022 and SWC_Up 10/03/2022.
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;
- Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;

- No non-compliances with the EPL were reported during the 2021-2022 annual monitoring period;
- Based on this review of the 2021-2022 annual monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Flare temperatures fell below the required KPI of 760 degrees Celsius on 19 of 25 occasions over the 2021-2022 monitoring period. Further detail relating to root causes and current works are available in the attached Flare Reports in Appendix G of this report.
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

TABLE OF CONTENTS

EXECUT	TIVE SUMMARY	II
1.0	INTRODUCTION	1
1.1	Project Background	1
1.1.1	Site History	1
1.1.2	EPL Requirements	1
1.2	Objectives	2
1.3	Scope of Work	2
2.0	SITE DESCRIPTION	2
2.1	Location	2
2.2	Surrounding Landuse	3
2.2.1	Sensitive Receptors	4
2.3	Topography & Drainage	4
2.4	Soil Landscape	4
2.5	Geology	4
2.6	Hydrogeology	5
2.6.1	Existing Bores	5
2.6.2	Flow Regime	5
2.7	Surface Water	5
3.0	ASSESSMENT CRITERIA	6
3.1	Contaminants of Potential Concern	6
3.2	Water Quality Guidelines	6
3.2.1	ANZG Guidelines	6
3.2.2	National Environmental Protection Measure (NEPM)	7
3.3	Dust Deposition Assessment Criteria	7
3.4	Surface Methane GAS Assessment Criteria	7
3.5	Gas accumulation monitoring in enclosed structures	8
4.0	SAMPLING METHODOLOGY	8
4.1	Water Sampling	8
4.1.1	Location of Water Monitoring Points	8
4.1.2	Depth to Water	8
4.1.3	Sample Collection	8
4.1.4	Groundwater Sampling	8
4.1.5	Field Testing	9
4.2	Dust Deposition sampling	9
4.3	Surface Methane Gas Monitoring	9
4.4	Gas Acummulation Moitoring in enclosed structures1	0

4.5	Laboratory Analysis	10
4.6	Flare Monitoring	10
5.0	QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	10
5.1	Data Quality Objectives	
5.2	QA/QC Procedures	11
5.3	EPL Non-Compliance	12
6.0	WATER QUALITY RESULTS	12
6.1	Overflow Results	12
6.2	Field Testing	12
6.3	Physical Indicators	12
6.3.1	Depth	
6.3.2	Temperature	
6.3.3	Salinity (EC & TDS)	
6.3.4	Dissolved Oxygen	14
6.3.5	рН	
6.3.6	Total Suspended Solids (TSS)	15
6.4	Inorganic Analytes	15
Nutri	ents	15
6.4.1	Ammonia	15
6.4.2	Nitrate	16
Anior		. –
6.4.3		
6.4.4		
6.4.5	Sulphate	
6.4.6	I otal Alkalinity	
0.4.7	Bicarbonate Aikalinity	
	Manganaga (Tatal Mn)	10
640	Iron (Total Fe)	10
641	Ω Iron (Dissolved Fe)	19
641	1 Calcium	19
641	2 Potassium	20
Orga	nic Analytes	
6.4.1	3 Total Organic Carbon	
7.0	DUST GAUGE RESULTS	
8.0	METHANE MONITORING	21
Q 1	Surface Cas Methane	21 01
0.1 8.2	Gas accumulation monitoring in anclosed structures	2⊺ 21
0.2		
J.U		22

10.0	ANNUAL ENVIRONMENTAL ASSESSMENT	
10.1	Monitoring Point Summary	24
10.2	Environmental Management	24
10.2.	1 Landfill Operations	
10.3	Environmental Safeguards	24
10.4	Monitoring Program	25
11.0	CONCLUSIONS	
12.0	LIMITATIONS	
13.0	REFERENCES	

LIST OF TABLES, FIGURES & APPENDICES

TABLES

- Table 1: Site Identification
- Table 2: Surrounding Land use
- Table 3: Groundwater Assessment Criteria
- Table 4: Adopted Guideline Criteria
- Table 5: Data Quality Objectives
- Table 6: Summary Table of Overflow Events
- Table 7: Summary of Dust Gauge Results
- Table 8: Summary of Flare Operating Temperatures
- Table 9: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment Criteria Q1
- Table 10: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment Criteria Q2
- Table 11: Water Quality Results Comparison of Quarterly Monitoring Results Against Site Assessment Criteria Q3
- Table 12: Water Quality Results Comparison of Quarterly Monitoring Results Against SiteAssessment Criteria Q4
- Table 13: Duplicate Groundwater Sample Results and QC Data
- Table 14:
 Duplicate Surface Water Results and QC Data

FIGURES

- Figure 1: Site Location Map
- Figure 2: Sampling Points & Site Plan
- Figure 3: Surface Methane Gas Sample Transects
- Figure 4: Regional Geology
- Figure 5: Registered Bores

CHARTS

Chart 1 - Weekly Flare Operating Temperatures 2021-2022

Chart 2 to Chart 17 – Groundwater Water Quality Results 2017-2022

Chart 18 to Chart 33 – Onsite Surface Water Quality Results 2017-2022

Chart 34 to Chart 45 – Rocklow Creek Surface Water Quality Results 2017-2022

Chart 46 to Chart 60 – Leachate Water Quality Results 2017-2022

APPENDICES

Appendix A EPL 5984 Sampling Point Summary (NSW EPA, 10/05/2021)

- Appendix B Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) Water Samples
- Appendix C Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) Dust Samples

- Appendix D Surface Gas (Methane) Field Sheets
- Appendix E Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) Overflow Event
- Appendix F Calibration Certificates
- Appendix G Gas Flare Reports
- Appendix H Albion Park Weather Data Ex Bureau of Meteorology September 2022
- Appendix I Concentration Monitoring Summary 2021-2022

1.0 INTRODUCTION

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Annual Environmental Monitoring Report (AEMR) for the Dunmore Recycling and Waste Depot (*herein referred to as the Site*).

This (AEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the 2021-2022 monitoring period, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

1.1 PROJECT BACKGROUND

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

1.1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

1.2 OBJECTIVES

The objectives of this AEMR are to:

- > Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in an Annual Environmental Monitoring Report.

1.3 SCOPE OF WORK

The scope of work for this AEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the 2021-2022 monitoring period in regard to the following tasks:

- > Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- > Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- Review all quarterly environmental monitoring reports from the 2020 reporting period and available data from the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2.0 SITE DESCRIPTION

2.1 LOCATION

The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 1** below. Details of the Site boundary and sampling points

are provided in the Site Plan (see **Figure 2**). The key features required to identify the Site are summarised in **Table 1**.

Table 1: Site Identification

Aspect	Description
Site	Dunmore Recycling and Waste Depot
Street Address	44 Buckleys Road, Dunmore, NSW 2529
Site Area	72.36 hectares
Title Identifier	Lot 21 DP 653009, Lot 1 DP 419907
Zoning	RU1 Primary Production
Local Government Area	Shellharbour City Council

Source: SIX Maps (https://maps.six.nsw.gov.au/) (cited 16/01/2020)

2.2 SURROUNDING LANDUSE

The current activities and operations on adjacent properties and the surrounding area include:

Direction	Land Use
North:	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.

Direction	Land Use	
East:	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.	
South:	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.	
West:	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.	

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- > Recreational users of the Minnamurra River estuary environs;
- > Down gradient stakeholders; and
- Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 TOPOGRAPHY & DRAINAGE

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 SOIL LANDSCAPE

The previous annual monitoring report (Environmental Earth Sciences 2018) reported the soil profile at the Site as organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils (ASS).

2.5 GEOLOGY

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet. The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb)

characterised by Latite. Based on the mapped geology, previous investigations and borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 HYDROGEOLOGY

Groundwater resources in the area are expected to be associated with *Shallow unconfined* alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater. Given the spatial distribution of the bores and disturbed ground condition expected within the land fill cell, groundwater contours could not be accurately mapped.

A review of the *NSW Office of Water (NOW)* existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see **Figure 5**). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (*Boral Site*) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (*Environmental Earth Sciences,* 2018) have identified that groundwater flows vary across the Site, but the general trend was south, towards Rocklow Creek.

Based on the unconfined nature of the aquifers, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, was largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 SURFACE WATER

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited

to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3.0 ASSESSMENT CRITERIA

3.1 CONTAMINANTS OF POTENTIAL CONCERN

This section of the report provides a summary of the Contaminants of Potential Concern (CoPC) associated with the Site. CoPC's are identified in the Sites EPL/s which document the CoPC and water quality indicators required to be monitored. Analytical requirements for all water sampling are provided in Appendix A.

3.2 WATER QUALITY GUIDELINES

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC 1995). For the purpose of this assessment, the relevant criteria selected to protect environmental values are summarised in **Table 3** below:

Table 3: Groundwater Assessment Criteria

Environmental Value	Relevant Guideline
Ecosystems / Health	ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality).
Screening Levels	National Environment Protection Measure (NEPM) (2013).
Drinking Water	Australian Drinking Water Guidelines (ADWG) (2018)

3.2.1 ANZG Guidelines

The relevant criteria for this water quality assessment are the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG;2018). The ANZG (2018) provide Default Guideline Values (DGVs) for four (4) levels of protection categorised by the percentage of species possibly affected, being 80%, 90%, 95% or 99% of species. Values for a level of protection for 95% of species in a marine environment have been adopted and are displayed in **Table 4**. Where DVGs are not available reference is made against the ANZECC (2000) Trigger Values (TVs). The *NSW Office of Water* (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the **95 per cent of species level of protection**.

Parameter	Groundwater Guideline	Surface water Guideline
Ammonia	0.9 mg/L	0.9 mg/L
Nitrate	10.6 mg/L	10.6 mg/L
рН	6.5-8.5 pH units	6.5-8.5 pH units

Table 4: Adopted Guideline Criteria

Parameter	Groundwater Guideline	Surface water Guideline
Soluble Iron	0.3 mg/L	0.3 mg/L
Manganese	1.9 mg/L	1.9 mg/L
Electrical Conductivity	125-2200 μS/cm	125-2200 μS/cm

3.2.2 National Environmental Protection Measure (NEPM)

The NSW EPA has endorsed the use of the Groundwater Investigation Levels (GILs) given in the 2013 ASC NEPM 'Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater'. The latest NEPM provide a framework for risk-based assessment of groundwater contamination.

Groundwater Health Screening Levels (HSLs) are provided for four (4) land use categories for vapour intrusion (Table 1A[4]) associated with Total Recoverable Hydrocarbons TRH (F1 & F2) and BTEX compounds.

NEPM	Description of Land use Categories
HIL A	Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
HIL B	Residential B with minimal opportunities for soil access; includes buildings with fully and permanently paved yard space such as high-rise buildings and apartments.
HIL C	Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.
HIL D	Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.
GILs	Groundwater Investigation Levels (GILs) should be applied based on the receiving environment and groundwater resources. GILs are provided in NEPM Table 1C for; Fresh Waters; Marine Waters; and Drinking Water;
	Ecological Investigation Levels (EILs) for common contaminants in the top two (2) metres of soil based on three (3) generic land use settings:
EILs	Areas of ecological significance;
	 Urban residential areas and public open space; and
	Commercial and industrial land uses.

3.3 DUST DEPOSITION ASSESSMENT CRITERIA

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m²/month.

3.4 SURFACE METHANE GAS ASSESSMENT CRITERIA

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

3.5 GAS ACCUMULATION MONITORING IN ENCLOSED STRUCTURES

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold gas levels to ensure that gas is not accumulating within enclosed structures on or withing 250m of deposited waste or leachate storage. The acceptable threshold for 1% (volume/volume).

4.0 SAMPLING METHODOLOGY

Field sampling was conducted by *ALS Environmental* (Wollongong) as commissioned by *SCC* on quarterly basis. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following sub-sections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL's and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

4.1 WATER SAMPLING

4.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in Appendix A. The water sampling regime included; five (5) surface waters, one (1) located onsite and four (4) located off-site; twelve (12) groundwater monitoring wells surrounding the landfill operations; and two (1) leachate point. Sampling locations are illustrated in **Figure 2** attached.

4.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. *No LNAPL was identified in monitoring Wells.*

4.1.3 Sample Collection

Sampling is conducted independently by *ALS Environmental* under contract with *SCC*. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling is conducted in accordance with *ALS* sampling protocols.

4.1.4 Groundwater Sampling

Groundwater wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated wells are sampled before likely higher contaminated wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes or low flow parameter stabilisation methods applied with field sheets provided to document

pumping volumes and field parameters. Samples were collected using clear disposal bailers. and were sealed in laboratory-prepared sampling containers appropriate for the analysis. All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Surface water and leachate samples were collected using as 'grab samples' from the midpoint of the structure and at mid-depth.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- Minimal practical disturbance during sampling;
- > Samples placed in sample containers as soon as possible;
- > Sample containers contain zero headspace;
- Samples placed directly on ice and transported to the laboratory as soon as possible; and
- Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

4.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- > Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- > Temperature; and
- ➢ pH (Acidity).

4.2 DUST DEPOSITION SAMPLING

Measurement of dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere. The 2021-2022 monitoring period was the first year of the four (4) dust monitoring points.

Dust collection gauges were set up for a one (1) month period between the dates; Q1 18/11/21-07/12/21; Q2 08/02/22-09/03/22; Q3 04/05/22-07/06/22; and Q4 03/08/22-07/09/22. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

4.3 SURFACE METHANE GAS MONITORING

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was below 10 km/hr. Testing was conducted using a calibrated *LaserOne* portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in **Appendix F.**

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in **Figure 3**. Transects were recorded using a Magellan *SporTrak* GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste. Whenever possible the concentration of methane gas was also recorded in any buildings located within a distance of 250 m of the deposited waste. Any depressions or surface fissures away from the sampling grid were also investigated.

4.4 GAS ACUMMULATION MOITORING IN ENCLOSED STRUCTURES

The concentration of methane gas (in units of percent volume/volume) inside all enclosed structures within 250m of emplaced waste or leachate storage facility at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling testing was conducted using a calibrated *LaserOne* portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in **Appendix F.**

The internal methane concentrations for each enclosed structure were recorded by a field technician. A site plan depicting the location onsite of each structure provided in **Figure 3**. Any depressions or surface fissures away from the sampling grid were also investigated.

4.5 LABORATORY ANALYSIS

ALS, a NATA accredited laboratory, was contracted by *SCC* to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

4.6 FLARE MONITORING

Landfill gases are formed through bacterial action on emplaced waste and are a normal byproduct of Landfilling operations. Landfill gas is a mixture of many different gases, typically its major components include methane and carbon dioxide. Smaller concentrations of nitrogen, oxygen, ammonia, sulphides, hydrogen, carbon monoxide, and nonmethane organic compounds (NMOCs) and Volatile Organic Compounds (VOC's) may also be present.

When operated efficiently the use of a gas flare to burn landfill gas can significantly reduce emissions of methane, NMOCs and VOC's.

The flare is monitored, maintained and operated by *LGI LTD*. Copies of LFG reports for the relevant reporting period are included as **Appendix G**.

Quarterly monitoring data is represented in Table 8 and visually represented in Chart 1. Quality Assurance and Quality Control (QA/QC)

4.7 DATA QUALITY OBJECTIVES

Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented by

Australian Standard: AS 4482.1-2005 and referenced by the National Environment Protection (Assessment of Site Contamination) Measure (NEPC;2013). The DQO's for the investigation were to obtain representative data to allow assessment of:

- groundwater quality;
- The risks posed to human health and the environment, including potential future users of the Site; and
- > The requirements for any further investigative works.

The assessment was conducted to a standard consistent with generally accepted and current professional consulting practice for such an investigation. The evaluation criteria adopted for the investigation are summarised in **Table 5**.

DQO	Evaluation Criteria
Documentation completeness	Completion of field records, chain of custody documentation, laboratory test certificates from NATA-accredited laboratories.
Data comparability	Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	Adequate sampling coverage of all areas of environmental concern at the Site, and selection of representative samples.
Precision and accuracy for sampling and analysis	Use properly trained and qualified field personnel and achieve field and laboratory QA/ QC criteria.

Table 5: Data Quality Objectives

4.8 QA/QC PROCEDURES

It should be noted that whilst the EPL does not require field duplicates, ENRS recommend sampling include rinsate samples and field duplicates at the standard rate of 1 in 10, or field QA/QC is conducted in accordance with *ALS* procedures.

The majority of the QA/QC data provided for this report by SC was prepared by *ALS* and is included in the attached ALS QC and QCI reports. *ALS* is NATA accredited for field sampling and laboratory testing.

Relative Percent Difference (RPD) analysis of all duplicate and triplicate samples(s) results was performed by ENRS and is included in the report as **Table 11** and **Table 12**. Results were generally reported within the acceptance criteria documented in Table 4 of AS4482.1-2005, the RPD for inorganics was set at <30% and for organics set at <50%.

Duplicate results for groundwater QC showed 100% compliance between sample and duplicate results but some non-compliances were noted in the results of the surface water sample and its duplicate. For all QA/QC results complied with the required standards, or showed variations that would have no significant effect on the quality of the data or the conclusions of this environmental assessment. However, non-conforming QC data may be evidence of external factors including non-homogenous sample matrix which may be present through the inclusion of sediments or suspended solids in the surface water samples.

4.9 EPL NON-COMPLIANCE

Monitoring requirements were generally met during the 2021-2022 monitoring period as defined by the EPL.

5.0 WATER QUALITY RESULTS

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in **Table 9 - Table 12** with comparison against the relevant Site Assessment Criteria (SAC). The laboratory certificates of analysis are provided in Appendix B.

5.1 OVERFLOW RESULTS

A total of Four (4) overflow samples were taken at SWP-1 during the 2021-2022 period and are displayed in **Table 6** below. On all occasions samples results were compliant to the EPA trigger values for pH and Suspended Solids concentrations.

Sample Date	рН	TSS	Ambient Temperature	Rainfall (mm) Previous 24Hrs
13/05/2022	7.90	23	20.6	28.6
24/05/2022	7.60	7	16.9	22.6
21/10/2022	7.90	21	22.0	52.2
25/10/2022	7.90	23	24.9	60.0

Table 6: Summary Table of Overflow Events

5.2 FIELD TESTING

Field testing is conducted by ALS during sampling to record physical water parameters. A water quality meter is used to measure the following parameters in the field:

- Oxidation-reduction reaction (ORP Redox);
- Electrical Conductivity (Salinity);
- > pH (Acidity); and
- Dissolved Oxygen (surface waters only).

5.3 PHYSICAL INDICATORS

5.3.1 Depth

Groundwater

The 2022 September Quarter (Q4) measured depth of groundwater between **0.64 mbgl** (BH-15, 06/09/2022) to **4.56 mbgl** (BH-14, 06/09/2022). Although results are generally consistent

with historical data of groundwaters a higher degree of variance is evident in the longer term, which appears consistent with the increased rainfall events noted in recent years.

5.3.2 Temperature

Groundwater

In the 2022 September Quarter, temperature of groundwater ranged between **14.8°C** (BH-15, 06/09/2022) and **25.3°C** (BH-1C, 06/09/2022). Groundwater temperatures remained consistent with historical data.

Surface Waters

The 2022 September Quarterly Surface water temperature at SWP-1 was **12.1°C** (06/09/2022). The results of additional overflow samples taken at this location in October 2022 are summarised in **Table 6** above. Surface Water temperatures remain consistent with historical data.

Leachate

The 2022 September Quarter Leachate Temperatures at the leachate Tank (LP-1) was **13.0°C** (05/0/2022). Allowing for seasonal variability Leachate temperatures remain consistent with historical data.

5.3.3 Salinity (EC & TDS)

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio for of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between **125 \muS/cm - 2,200 \muS/cm (~1,500 mg/L).**

Groundwater

During the September Quarter 2022 monitoring period, salinity ranged between; **822 \muS/cm** (BH-18, 06/09/2022) and **7,360 \muS/cm** (BH-1C, 05/09/2022). With the exception of BH1c, BH13 and BH18, all other groundwater monitoring locations generally trended downwards with respect to salinity over the 2021-2022 monitoring period. In the final monitoring round of September 2022 four (4) sites reported salinity values in excess of freshwater SAC of **2,200 \muS/cm**.

Surface Waters

In the 2022 September Quarter, Electrical Conductivity results for onsite surface water (SWP-1, 05/09/2022) was **585 \muS/cm** which corresponds to a calculated Total Dissolved Solids result of **392 mg/L**. These results are below the TV.

Electrical conductivity for offsite surface waters ranged between **1,370 \muS/cm** (SWC-Up, 05/09/2022) to **1,990 \muS/cm** (SWC-Down_2, 05/0/2022).

Calculated Total Dissolved Solids results for offsite surface waters located along Rocklow Creek ranged between **990 mg/L** (SWC-Up, 05/09/2022) to **1,410 mg/L** (SWC-Down_2, 05/0/2022). The results are consistent with a tidal creek.

Leachate

Leachate salinity for the 2022 September Quarter was **8,230 \muS/cm** (LP1, 05/09/2022) which was above the TV. Leachate Salinity has been trending down since the implementation of the

new Leachate Treatment Plant and the subsequent disposal of treated leachate to sewer which commenced in July/August 2021.

5.3.4 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field during sampling. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their efficient metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulphide and Ammonia.

The ANZECC (2000) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm.

Surface Waters

Dissolved Oxygen at SWP-1 in the 2022 September Quarter was **8.7 mg/L** (05/09/2022). The DO concentration of additional overflow samples was **5.77 mg/L** (21/10/2022) and **4.34 mg/L** (25/10/2022). Both results are below the TV. Results are consistent with historical data.

During the 2022 September Quarter Dissolved Oxygen for the offsite surface waters at Rocklow Creek ranged from **9.01 mg/L** (SWC-2, 05/09/2022) to **9.37 mg/L** (SWC-down, 05/09/2022). All Dissolved Oxygen results were compliant to the TV requirements. Results are consistent with historical data.

Leachate

Dissolved oxygen at LP1 (Leachate Tank) was **7.14 mg/L** (05/09/2022). Leachate results are consistent with historical data.

5.3.5 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Groundwater

For the September 2022 monitoring period Groundwater pH was reported between **pH 6.7** (BH-13, BH-14 & BH-18, 05/09/2022) and **pH 7.4** (BH-3 & BH-19r, 05/09/2022). All groundwater results were reported within the ANZECC recommended range of pH 6.5-8.0. The results are generally consistent with historical data.

Surface Water

Surface water for the 2022 September Quarter reported pH values of between **pH 7.60** (SWP-1, 05/09/2022) and **pH 7.40** (SWC-2, SWC-down, SWC-down2, 05/09/2022). The pH of additional overflow samples collected from SWP-1 was **7.90** (21/10/2022) and **7.90** (25/10/2022) respectively. All groundwater results were reported within the ANZECC recommended range of pH 6.5-8.0. The results are consistent with historical data.

Leachate

During the 2022 September monitoring period leachate pH at LP-1 was reported at **pH 8.90** (05/09/202). Results are consistent with the historical values.

Leachate pH has been trending upward since the implementation of the new Leachate Treatment Plant and the subsequent disposal of treated leachate to sewer which commenced in July/August 2021 but has remained consistent between **pH 8.8** (07/03/2022) and **pH 9.00** (07/06/2022) for the last three (3) quarters.

5.3.6 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces.

TSS was reported for surface water only. Concentrations for the September 2022 Quarter were reported between **6 mg/L** (SWC_Down, 05/09/2022 and **9 mg/L** (SWP-1 & SWC-Down_2, 05/09/202). All results were below the 50mg/L TV. TSS results are consistent with historical results.

The TSS of additional Overflow samples collected from SWP-1 was **23.0 mg/L** (21/10/2022) and **17.0 mg/L (25/10/2022)** respectively. All results were below the **50mg/L** TV.

5.4 INORGANIC ANALYTES

Nutrients

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher pH.

5.4.1 Ammonia

Groundwater

For the September 2022 monitoring period, ammonia was measured within groundwater monitoring bores between **0.59 mg/L** (BH14, 05/09/2022) and **376 mg/L** (BH-1c, 05/09/2022). With the exception of BH-14 all groundwater wells exceeded the adopted trigger value of **0.91 mg/L** throughout the monitoring period. This is consistent with historical values.

Surface Water

Ammonia in surface water at SP-1 was **1.82 mg/L** (05/09/2022) which is generally consistent with previous routine monitoring samples. Additional overflow samples taken from this location

yielded ammonia concentrations of **16.4 mg/L** (21/10/2022) and **15.8 mg/L** (25/10/2022). Overflow samples taken in May 2022 yielded similar results with ammonia concentrations of **15.8 mg/L** (13/05/2022) and **22.4 mg/L** (24/05/2022) indicating elevated ammonia levels are associated with overflow samples.

Ammonia concentrations in Offsite surface waters associate with Rocklow Creek ranged from **0.15 mg/L** (SWC_Up, 05/09/2022) to **0.46 mg/L** (SWC_2, 05/09/2022) during the monitoring period and are generally consistent with historical data.

Leachate

Ammonia in leachate during the September 2022 monitoring period was reported at **877 mg/L** (LP1, 05/09/2022). Although high ammonia concentrations are expected in untreated leachate ammonia concentrations appear to be trending down slightly since the implementation of the new Leachate Treatment Plant and the subsequent disposal of treated leachate to sewer which commenced in July/August 2021.

5.4.2 Nitrate

Groundwater

During the September 2022 monitoring period results for Nitrate in groundwater were reported between **<0.1 mg/L** in multiple bores and **6.37 mg/L** (BH-3, 05/09/2022). Only one (1) groundwater well reported an exceedance above the TV of 0.7mg/L throughout the 2021-2022 monitoring period (BH-3, 05/09/2022) down from four (4) wells in the previous Annual Report.

Surface Water

During the September 2022 monitoring period exceedances to the Nitrate TV of 0.7 mg/L was reported for all surface water samples including **2.06 mg/L** (SWP-1, 05/09/2022). The Nitrate concentration of additional overflow samples from SWP-1 were also elevated at **0.98 mg/L** (SWP-1, 21/10/2022) and **1.04 mg/L** (SWP-1, 25/10/2022). Prior to the exceedance noted on the 05/09/2022 historical nitrate concentrations were generally compliant with the TV of 0.7mg/L. Elevated nitrate concentrations in overflow samples at SWP-1 may be indicative that the entrainment of nitrates in surface water may be facilitating their migrating to the offsite surface waters of Rocklow Creek.

Nitrate concentrations for offsite surface waters in Rocklow Creek during the same monitoring period values ranged from **0.84 mg/L** (05/09/2022, SWC_Down_2) to **0.88 mg/L** (05/09/2022, SWC_Up). The Nitrate concentrations of all offsite surface water samples exceeded the TV of 0.7mg/L for the September 2022 monitoring round.

Leachate

Nitrate concentration of leachate (LP-1) was elevated at **1.0mg/L** during the September 2021-2022 monitoring period. Generally, nitrate levels have been consistently trending around **0.1mg/L** but uncharacteristic spikes have been observed on three (3) occasions in the past, **1.2mg/L** (01/02/2018), **0.71mg/L** (13/11/2018) and **0.86mg/L** (11/03/2020).

Groundwater

Results for the September 2022 monitoring period indicated Nitrate concentrations in groundwater were between <0.01 mg/L in multiple bores and 6.37 mg/L (BH-3, 05/09/2022). Nitrate levels are consistent with historical data.

Anions

5.4.3 Chloride

Groundwater

In the September 2022 monitoring period, results for Chloride in groundwater were reported between **58 mg/L** in (BH-14, 05/09/2022) and **940 mg/L** (BH-1c, 05/09/2022). Results are generally consistent with historical data.

Surface Water

During the September 2022 monitoring period chloride results for surface water SWP-1 was **93 mg/L** (05/09/2022). Two additional overflow samples from this location yielded results of **214 mg/L** (21/10/2022) and **178 mg/L** (21/10/2022). Results are generally consistent with historical data.

Leachate

September 2022 Chloride concentration at the Leachate Tank (LP-1) was **1840 mg/L** (05/09/2022). The result was consistent with historical data.

5.4.4 Fluoride

Groundwater

In the September 2022 monitoring period results for Fluoride in groundwater were reported between <0.1 mg/L (BH-4, 05/09/2022) and 0.5 mg/L (BH-14, 05/06/2022). Results are consistent with previous data.

Surface Water

During the September 2022 monitoring period fluoride results for surface water SWP-1 was <0.1 mg/L (05/09/2022). Two additional overflow samples from this location yielded results of 0.4 mg/L (21/10/2022) and 0.4 mg/L (21/10/2022). Results are generally consistent with historical data.

Leachate

Leachate results for fluoride at the leachate tank (LP-1) during the September 2022 monitoring period was **0.2 mg/L** (05/09/32022). Results are consistent with historical data.

5.4.5 Sulphate

Groundwater

The September 2022 results for Sulphate in groundwater were reported between **<10 mg/L** BH-1c, 05/09/2022) and **473 mg/L** (BH-15, 05/092022). A spike on Sulphate concentration of **1,270 mg/L** was noted (BH15, 08/06/2022). However, sulphate levels returned to typical levels in the following sampling round. Results are generally consistent with historical data.

Surface Water

During the September 2022 monitoring period Sulphate levels in surface water was determined at **44 mg/L** (SWP-1, 05/09/2022). The sulphate concentration of overflow samples taken from SWP-1 were **115 mg/L**, (21/10/202) and **104 mg/L**, (25/10/202).

During the September 2022 monitoring period Sulphate levels for the offsite surface waters ranged between **74 mg/L** (SWC-Up, 05/09/2022) and **104 mg/L** (SWC-Down_2, 05/09/2022).

Sulphate levels in the offsite surface waters have generally been trending down since 15/12/2020.

Leachate

Sulphate level at the leachate tank (LP-1) was **<10 mg/L** (0/09/2022). Results are consistent with historical data.

5.4.6 Total Alkalinity

Surface Water

Total Alkalinity at SWP-1 during h septime 2022 monitoring period was **361 mg/L** (05/09/2022). Results are consistent with historical data.

Leachate

Total Alkalinity in Leachate (LP-1) ranged was **3,700 mg/L** (05/09/2022). Results are consistent with historical data.

5.4.7 Bicarbonate Alkalinity

Groundwater

During the September 2022 monitoring period Bicarbonate in groundwaters ranged from **308 mg/L** (BH-19r, 05/09/2022) to **2,540 mg/L** (BH-1C, 05/09/2022). Results are generally consistent with historical data.

Metals & Metalloids

5.4.8 Manganese (Total Mn)

Groundwater

Manganese was analysed in groundwater, surface water and leachate sampling points. Concentrations of Manganese in groundwater for the September 2022 monitoring period were reported between **0.022 mg/L** (BH-3, 05/09/2022) and **0.597 mg/L** (BH-21, 05/09/2022). The results are generally consistent with historical data.

Surface Water

During the September 2022 monitoring period the Manganese concentration at SWP-1 was **0.067 mg/L** (05/09/2022). Despite slightly elevated values of **0.903 mg/L** (24/05/2022) and **0.994 mg/L** (07/06/2022) Manganese concentration have been generally trending down at this sample location from a concentration maximum of 1.38 mg/L (15/12/2020).

Leachate

During the September 2022 monitoring period Manganese concentration of Leachate was reported as **0.106 mg/L** (Tank, 15/12/2020). These values are below the adopted TV (1.9 mg/L 95% of Species - freshwater) and are considered acceptable. Concentrations of Manganese have been trending down since 14/09/2021 which coincides with onsite changes to leachate management systems culminating in average discharges of 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum. Manganese concentrations should continue to be reviewed during subsequent monitoring events.

5.4.9 Iron (Total Fe)

During the September 2022 monitoring period Iron was measured in selected surface water samples including SWP-1 and Leachate Tank.

Surface Water

Concentrations of total iron within onsite surface water was reported as **1.01 mg/L** (SWP-1, 05/09/2022). Iron levels in additional overflow samples from this location were reported as **1.99 mg/L** (SWP-1, 21/10/2022) and **0.76 mg/L** (SWP-1, 25/10/2022). Results are generally consistent with historical data.

Leachate

Concentration of iron at the leachate Tank (LP-1) was **1.29 mg/L** (05/09/2022). Results are generally consistent with historical data.

5.4.10 Iron (Dissolved Fe)

During the September 2022 monitoring period the concentration of Dissolved Iron was measured in selected Groundwater locations across the site.

Groundwater

Dissolved iron was measured within selected groundwater and surface water sampling points. Groundwater results were reported between the laboratory lower limit of detection of <0.05 mg/L (BH14, 06/09/2022) and 9.45 mg/L (BH15, 06/09/2022). Results are generally consistent with historical data.

5.4.11 Calcium

During the September 2022 monitoring period Calcium concentration was measured within selected groundwater and surface water sampling points.

Groundwater

Groundwater results were reported between **88 mg/L** (BH-19r, 06/09/2022) and **177 mg/L** (BH9, 06/09/2022). Results are generally consistent with historical data.

Surface Water

Calcium in surface water ranged from **52 mg/L** (SWP-1, 05/09/2022). Calcium levels in additional overflow samples from this location were reported as 63 **mg/L** (SWP-1, 21/10/2022) and **0.62 mg/L** (SWP-1, 25/10/2022). Results are generally consistent with historical data.

Calcium levels of offsite surface waters ranged between **38 mg/L** (SWC-Up, 05/09/2022) to **43 mg/L** (SWC-2 & SWC-down 2, 05/09/2022). Results are generally consistent with historical data.

Leachate

Calcium concentration in Leachate (LP-1) was **44 mg/L** (05/09/2022). Results have been generally trending down since late 2021 14/09/2021 which coincides with onsite changes to leachate management systems culminating in average discharges of 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

5.4.12 Potassium

During the September 2022 monitoring period Potassium was measured within selected groundwater and surface water sampling points.

Groundwater

Groundwater results were reported between the laboratory **12 mg/L** BH-18, 06/09/2022 and **208 mg/L** (BH1c, 06/09/2022). Potassium levels in groundwaters are generally consistent with historical data.

Surface Water

Potassium levels in the offsite groundwaters ex Rocklow Creek ranged from **45 mg/L** (SWC-up, 17/06/2021) to **375 mg/L** (SWC-down 2, 15/12/2020). Surface water results for Potassium are generally trending down with respect to historical data.

Organic Analytes

5.4.13 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater, however high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- acting as proton donors/acceptors;
- providing pH buffering;
- > participating in mineral dissolution/precipitation reactions; and
- > providing carbon substrate for microbe-based biodegradation.

TOC was reported during the September 2022 monitoring period at the following concentrations:

Groundwater

TOC levels ranged between **14 mg/**L (BH-4; 06/09/2022) and **194 mg/L** (BH-1c; 06/09/2022). Results are generally consistent with historical data.

Onsite Surface Water

TOC level at **SWP-1** was recorded as **19 mg/L** (SWP-1, 05/09/2022). Additional overflow samples taken from this location were **28 mg/L** (SWP-1, 21/10/2022) and **23 mg/L** (SWP-1, 25/10/2022). Results are generally consistent with historical data.

Offsite Surface Water

TOC levels of all offsite surface waters were reported as 8 mg/L (05/09/2022).

Leachate

TOC level was **401 mg/L** (Leachate Storage Tank, 05/09/2022).

6.0 DUST GAUGE RESULTS

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month for each sampling round, in general accordance with AS3580.10.1. A total of four (4) quarterly (Q) rounds were conducted over the 2021-2022 monitoring period; Q1 18/11/2021 – 07/12/2021; Q2 08/02/2022 – 09/03/2022; Q3 04/05/2022 – 07/06/2022; and Q4 03/08/2022 – 07/09/2022. A summary of the September 2022 results is provided in **Table 7** below.

Sample ID	Guideline Criteria (g/m²/month)	Total Insolvable Matter (g/m²/month)	Comments
DDG1	4	0.6	Satisfactory
DDG2		0.6	Satisfactory
DDG3		0.6	Satisfactory
DDG4		1.7	Satisfactory

Table 7: Summary of Dust Gauge Results

Results for depositional dust during the 2021-2022 annual monitoring period reported levels of dust below the adopted assessment criteria of **4 g/m²/month**. Since No exceedances were recorded during the Q1, Q2, Q3 or Q4 monitoring periods the results were considered satisfactory. Dust gauge locations are provided in **Figure 2** attached. It is recommended that monitoring is continued in accordance with EPL 5984.

7.0 METHANE MONITORING

7.1 SURFACE GAS METHANE

The surface gas monitoring for the 2021-2022 monitoring period *DID NOT* detect any levels of methane above the EPA license limits of 500 ppm. The results were considered satisfactory. A table of results is provided in Appendix D.

A review of corresponding the Quarterly monitoring Reports for the 2021-2021 Q1, Q2 and Q3 monitoring periods confirmed that levels of surface methane above the EPA license limits of 500 ppm were NOT DETECTED during these monitoring periods. The annual monitoring results are considered satisfactory.

7.2 GAS ACCUMULATION MONITORING IN ENCLOSED STRUCTURES

The internal methane testing for enclosed structures within 250m of the landfill during the September 2022 monitoring period *DID NOT* detect any levels of methane above the EPA license limits of 1% V/V. The results were considered satisfactory. A table of results is provided in Appendix D. A review of corresponding the Quarterly monitoring Reports for the 2021-2021 Q1, Q2 and Q3 monitoring periods confirmed that levels of methane above the EPA

license limits of 1% V/V were NOT DETECTED during these monitoring periods. The annual monitoring results are considered satisfactory.

8.0 FLARE OPERATIONS

Year	Quarter	Date	Compliant	Non-Compliant
2021 Qtr	Qtr 1	10-Oct	769.0	-
		18-Oct	-	614.0
		26-Oct	-	662.0
		31-Oct	767.0	-
2022	Qtr 2	4-Jan	-	688.0
		13-Jan	-	573.0
		21-Jan	832.0	-
		28-Jan	840.0	-
		1-Feb	850.0	-
		8-Feb	853.0	-
		14-Feb	833.0	-
		25-Feb	-	711.0
		1-Mar	765.0	-
		10-Mar	-	-
		29-Mar	-	549.0
		31-Mar	-	-
	Qtr 3	8-Apr	-	750.0
		12-Apr	-	662.0
		22-Apr	-	665.0
		29-Apr	765.0	-
		2-May	827.0	-
		10-May	-	676.0
		21-May	-	746.0
		31-May	761.0	-
		3-Jun	910.0	-
		14-Jun	-	646.0
		21-Jun	-	651.0
		29-Jun	-	606.0
	Qtr 4	8-Jul	786.0	-
		13-Jul	-	745.0
		19-Jul	-	715.0
		29-Jul	832.0	-

 Table 8: Summary of Flare Operating Temperatures

Year	Quarter	Date	Compliant	Non-Compliant
		3-Aug	809.0	-
	10-Aug	778.0	-	
	16-Aug	-	745.0	
	18-Aug	776.0	-	
	2-Sep	-	600.0	
		8-Sep	-	575.0
		26-Sep	-	538.0
		30-Sep	-	633.0

Weekly average operating temperatures supplied by LGI displayed typical variation associated with a continuous process.

Weekly operating temperatures at the Flare fell below the Operational temperature Limit of 760 degrees on 5 out of 12 occasions during the September monitoring period.

The actions taken in September 2022 to address the root causes are outlined in the LGI Gas Flare reports included as **Appendix G**. Actions taken prior to the September 2022 period can be found in previous quarterly reports.

9.0 ANNUAL ENVIRONMENTAL ASSESSMENT

9.1 MONITORING POINT SUMMARY

Field measurements and NATA laboratory results for dust and methane results from the annual 2021-2022 monitoring period reported satisfactory results. Water results including leachate, groundwater, onsite and offsite surface water reported concentrations of analytes within the range historical values. Water results from the last four (4) years have been tabulated and presented **Charts 2-60** attached.

Monitoring point Exceedances to the SAC are highlighted in Table 9, Table 10, Table 11 and Table 12.

Results of surface methane and gas accumulation monitoring recorded satisfactory results. The landfill surface cap was therefore considered intact and effective during the monitoring period.

A Concentration Monitoring Summary table has been prepared for the 2021 – 2022 monitoring period and is attached as Appendix I.

9.2 ENVIRONMENTAL MANAGEMENT

9.2.1 Landfill Operations

ENRS understand 'solid' waste (general solid waste putrescible and non-putrescible) landfill operations are ongoing at the Site. Landfill practices should be conducted in accordance with the Site's Landfill Environmental Management Plan (LEMP) and the EPA Solid Waste Landfill Guidelines (EPA; 2016).

9.3 ENVIRONMENTAL SAFEGUARDS

Appropriate management actions are required to continue to prevent and detect potential groundwater and surface water pollution. The nearest sensitive receptors for any uncontrolled Site water and leachate include; areas of adjoining bushland; recreational users of the Minnamurra River estuary environs, down gradient stakeholders; and down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE).

It is recommended that any drainage and detention structures are inspected annually by a suitably qualified environmental professional to assess their structural integrity and identify the need for any maintenance (such as removal of deep rooted vegetation, sediment, and relining).

Access tracks to sampling points should be inspected and mainained prior to each quaterly sampling events.

Continue to review annual surface and groundwater monitoring results from up and down gradient of the land fill cells and offsite sampling locations within Rocklow Creek. Continue to monitor surface methane gas in order to assess the cappping integrity of the landfill cells.

9.4 MONITORING PROGRAM

The water, dust and surface methane monitoring program are required to demonstrate that Site activities are not generating any off-site pollution. The Site's EPL's and monitoring regime should be reviewed annually.

Review of the 2021-2022 monitoring results indicate no significant change in environmental conditions at the Site over the past three (3) years but did indicate downward trends in the concentrations of some pollutants at various locations across the Site. These are discussed in more detail within the relevant sections of this report. Future sampling events should continue to monitor the key indicators of leachate within surface and ground waters, especially concentration of ammonia and nitrate.

Should monitoring continue to report any significant changes in analyte concentrations the need for additional monitoring locations should be reviewed, including additional groundwater monitoring bores both up and down gradient locations of areas with analytical exceedances.

It is recommended that water quality results from future monitoring rounds continue be forwarded to a suitably qualified environmental professional for review within the laboratory holding time to compare against relevant guidelines and identify any irregularities so that additional testing may be conducted within the sample holding time.

10.0 CONCLUSIONS

Based on the findings obtained during the 2021-2022 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-12r, BH-13, BH-14, BH-15, BH-19r, BH-21 and BH-22. This was considered to be consistent with historical values;
- Offsite sample locations within Rocklow Creek generally reported satisfactory results. Exceedances for ammonia were recorded in some offsite surface water samples associated with Rocklow Creek, specifically samples SWC-down 14/09/2021, SWC_Down 07/12/2021, SWC_2 10/03/2022 and SWC_Up 10/03/2022.
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Methane levels of enclosed structures on or withing 250m of deposited waste or leachate storage were tested and found to be below the acceptable threshold for 1% (volume/volume) in all cases;

- Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;
- No non-compliances with the EPL were reported during the 2021-2022 annual monitoring period;
- Based on this review of the 2021-2022 annual monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Flare temperatures fell below the required KPI of 760 degrees Celsius on 19 of 25 occasions over the 2021-2022 monitoring period. Further detail relating to root causes and current works are available in the attached Flare Reports in Appendix G of this report.
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

11.0 LIMITATIONS

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

ENRS derived the data in this report primarily from visual inspections, examination of available records, interviews with individuals with information about the site, and if requested, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e., the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.

The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of the site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g., changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.

12.0 REFERENCES

ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.

- ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council. ISBN 09578245 0 5 (set).
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia.
- Australian Government (2011) National Health & Medical Research Council. National Resource Management Ministerial Council. National Water Quality Strategy. Australian Drinking Water Guidelines.
- Australian Standard AS 3580.10.1. Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter Deposited matter Gravimetric method
- Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales
- NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure.
- Netherlands (1994) Environmental Quality Objectives in the Netherlands. Ministry of Housing, Spatial Planning and the Environment, Netherlands Government. ISBN 90-6092-783-4.
- NSW Department of Environment and Climate Change (2009a). Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination
- NSW EPA (1995) Sampling Design Guidelines. ISBN 0-7310-3756-1.
- NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination.
- NSW EPA (1996) Environmental Guidelines: Solid Waste Landfills. ISBN 0 7310 3774 X
- NSW EPA (2016) Environmental Guidelines: Solid Waste Landfills (2nd Edition). ISBN 978 1 76039 350 2
- NSW EPA (Mar. 2020) Environmental Protection Licence (EPL) 5984
- NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903
- NSW Government (1997). Protection of the Environment Operations Act.
- NSW Government (2005). Protection of the Environment (Waste) Regulation.
- NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B Waste Landfills.

FIGURES

Environment & Natural Resource Solutions	Project:	ENRS0033	Source:	SixMaps	Date
08 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535	Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:
el: 02 4448 5490 Fax: 02 90374708 rojects@enrs.com.au www.enrs.com.au		44 Buckleys Rd, Dunmore, NSW	Status:	Rev 1	

ENRS	Olient.		Diawii.	FL	Figure.	5
Environment & Natural Resource Solutions	Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535	Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Registered
Fel: 02 4448 5490 Fax: 02 90374708 projects@enrs.com.au www.enrs.com.au		44 Buckleys Rd, Dunmore, NSW	Status:	Rev 1		Bores

TABLES

				Qua	rterly W	ater Mo	FABL nitoring	E 7: To Results -	tal Co Decemb	ncen er 2021	t ratio : Dunm	n Res ore Rec	ults sycling and	l Waste	Depot													
GILs -Trigger Values for Freshwate	er (Protection of 95% of	Species) A				-			1.9	-		-	0.9 (pH 8)		0.7						-	-	-	6.5 - 8.5	2200	-	-	
GILs -Trigger Values for Marine Wa	ater (Protection of 95%	of Species) ^A		-	-	-	-	-	-	-	-	-	0.91 (pH 8)	-	0	-	-	-	-	-	-	-	-	-	-	-	-	
Australian Drinking Water Guidelin	nes (2018) ^c		Health	-	-	-		-	0.5	-	-	1.5	-	3	50	-	-	-	-	-	-	-	-	6.5 - 8.5	-	-	-	
		1	Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-		250	-	-	-	5	6.5 - 8.5	-	-	-	
Lab Sample No. Report. Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Н	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
			Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl -	
BH1c	Groundwater	3	Dec 2021	939	134			197	0.12		12.10	0.2	371.00	< 0.01	< 0.01	160	2,390	2,390	< 10					7.10	7,370	23.9	3.15	
ВНЗ	Groundwater	5	Dec 2021	284	147			34	0.15		3.56	0.1	29.50	0.06	2.46	16	377	377	98					7.50	1,810	18.2	3.09	
BH4	Groundwater	6	Dec 2021	254	238			21	0.21		5.01	< 0.1	14.70	< 0.01	0.01	16	491	491	133					7.10	2,140	18.8	4.29	
ВН9	Groundwater	18	Dec 2021	626	242			73	0.58		4.82	0.4	90.40	< 0.01	< 0.01	64	1,290	1,290	114					7.00	4,700	18.4	3.10	
BH12r	Groundwater	17	Dec 2021	296	223			56	0.50		3.67	0.2	6.51	0.04	1.65	21	448	448	247					6.80	2,170	21.7	4.29	
BH13	Groundwater	10	Dec 2021	228	249			26	0.29		1.14	0.2	4.05	0.02	1.31	20	589	589	225					6.90	2,100	20.6	4.29	
BH14	Groundwater	11	Dec 2021	124	121			14	0.10		0.19	0.4	1.17	0.04	0.97	19	418	418	121					6.70	1,380	21.4	4.72	
BH15	Groundwater	7	Dec 2021	402	96			182	0.25		7.05	0.2	14.70	0.02	0.04	29	290	290	478					7.00	2,740	17.6	0.69	
BH18	Groundwater	25	Dec 2021	16	48			4	0.18		2.13	0.2	0.72	< 0.01	< 0.01	10	175	175	3					6.70	414	19.1	2.18	
BH19r	Groundwater	16	Dec 2021	268	166			24	0.14		1.05	0.1	4.90	< 0.01	< 0.01	16	430	430	178					7.20	1,880	18.6	4.45	
BH21	Groundwater	23	Dec 2021	380	156			20	0.33		0.15	0.3	2.95	< 0.01	0.12	26	494	494	351					7.10	2,610	21.1	2.96	
BH22	Groundwater	24	Dec 2021	274	160			23	0.06		0.27	0.3	1.54	< 0.01	< 0.01	23	433	433	255					7.10	2,030	17.9	2.57	
SWP1	Surfacewater	1	Dec 2021	115	43	19	94	7	0.31	0.12	0.06	0.2	< 0.01	< 0.01	< 0.01	23	238	238	33	4.09		6	1.60	7.50	806	20.4		
SWC_up	Surfacewater	20	Dec 2021	2,250	89	135	1,090	41	0.10	0.72	0.10	0.3	0.19	< 0.01	0.08	9	169	169	340	6.20		10	5.30	7.30	7,180	19.2		
SWC_2	Surfacewater	19	Dec 2021	3,870	127	225	1,860	71	0.10	0.66	0.11	0.4	0.62	< 0.01	0.07	9	174	174	518	4.90		7		7.30	11,900	18.8		
SWC_down	Surfacewater	21	Dec 2021	5,760	172	331	2,740	102	0.12	0.60	0.25	0.5	1.28	< 0.01	0.06	9	188	188	733	4.81		< 5	4.20	7.10	17,100	19.5		
SWC_down_2	Surfacewater	22	Dec 2021	3,540	118	205	1,710	65	0.10	0.61	0.09	0.4	0.31	< 0.01	0.07	9	169	169	488	5.66		< 5	4.80	7.30	10,900	19.0		
Leachate Storage Tank LP1	Leachate	2	Dec 2021	1,760	84			332	0.24	1.24		0.2	1150.00	< 0.10	< 0.10	500	4,180	4,350	< 10	3.38	42.1			8.40	12,400	24.9		

Investigation Investigation levels apply to typical slightly-moderately disturbed systems. Trigger Levels for 95% of ANZECC 2000 ANZG 2018 - pH Upper and Lower Limit for NSW Lowland Rivers (Table 3.3.2).	species. See ANZ	ECC & ARMCANZ	(2000) for guidar	nce on applying	these levels to d	ifferent ecosysten	n conditions. Also	the sames as t	he NEPM (2013)	EILs.											
Investigation Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NH	IRC 2018).																				
NEPM (2013 1 NEPM (2013 Table 1A(4) Groundwater HSLs for vapour intrusion (Sand 2m-4m)																					
Netherlands (Netherlands (2000) Circular on Target Values and Intervention Values for Soil Remediation. Ministry of	f Housing, Spatia	I Planning and th	e Environment, N	etherlands Gov	ernment (Dutch li	ntervention Value/	Indicative of Serie	ous Contaminat	ion).												
Former NSW Former NSW EPA (1994) Guidelines for Assessing Service Station Sites. Replaced by the Technical N	ote for Investigati	ion of Service Sta	tion Sites (EPA;2)	014).																	
E Former NSW EPA (1994) Guidelines for Assessing Service Station Sites. Replaced by the	MIN	16.0	43.0	0.0	0.0	4.0	0.06	0.00	0.00	0.1	0.01	0.01	0.01	9.0	169.0	169.0	3.0	0.00	0.00	0.00	0.00
	MAX	5760	249	331	2740	332	0.58	1.24	12.10		1150.00	0.10	2.46	500	4180	4350	733	6.20	42.10	10.00	5.30
	Mean	1188.1	145.2	50.8	416.3	71.8	0.22	0.22	2.32	0.3	94.14	0.02	0.39	54.4	719.1	728.5	240.8	1.61	2.34	1.83	0.94

6.70	414.
8.40	1710
7 4 7	5000

17.6 0.00 25 4.72 20.0 2.21

					Qu	arterly	T Water Mo		E 8: To g Result	o tal Co s - Marc	oncen h 2022: I	tration Dunmor	n Res i re Recyc	u lts ling and	Waste Dej	pot													
GILs -Trigger	Values for Freshwate	r (Protection of 95% of 9	Species) ^A		-	-	-	-	-	1.9	-	-	-	0.9 (pH 8)	-	0.7	-		-	-	-	-	-	-	6.5 - 8.5	2200	-	-	
GILs -Trigger	Values for Marine Wa	ater (Protection of 95% o	of Species) ^A		-	-	-		-	-	-	-	-	0.91 (pH 8)	-	-	-		-	-		-	-	-	-	-	-	-	
Australian Dri	nking Water Guideline	es (2018) ^c		Health	-	-	-	-	-	0.5		-	1.5	-	3	50	-	-	-	-	-	-	-	-	6.5 - 8.5	-	-	-	
				Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-		-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	
Lab Repor t.	Sample No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrito as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Н	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
				Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	0.1	рН 0.01	µS/cm 1	°C 0.1	mbgl -	
	BH1c	Groundwater	3	Mar 2022	855	124			205	0.12		12.20	0.2	347	< 0.01 <	0.01	182	2,330	2,330	< 10					7.00	7,420	23.0	2.47	
	BH3	Groundwater	5	Mar 2022	82	115			27	0.01		< 0.05	< 0.1	2.56	0.03	10.20	16	280	280	104					7.20	1,060	18.9	1.42	
	BH4	Groundwater	6	Mar 2022	86	80			7	0.07		0.54	< 0.1	2.77	0.03	0.63	12	252	252	58					7.00	831	19.5	2.83	
	BH9	Groundwater	18	Mar 2022	484	215			69	0.54		5.15	0.3	76.8	< 0.01	0.01	63	1,630	1,630	73					7.00	4,360	18.6	2.32	
	BH12r	Groundwater	17	Mar 2022	405	229			50	0.52		11.40	0.2	4.98	0.10	5.20	25	465	465	240					6.70	2,460	21.1	3.58	
	BH13	Groundwater	10	Mar 2022	28	101			6	0.04		0.33	0.2	0.22	0.09	4.00	13	297	297	46					6.60	727	21.0	2.93	
	BH14	Groundwater	11	Mar 2022	18	75			41	0.07		0.09	0.6	0.29	0.01	46.10	43	76	76	85					6.00	796	21.0	2.85	
	BH15	Groundwater	7	Mar 2022	296	59			152	0.19		6.12	0.2	9.17	0.02	0.10	34	317	317	261					7.00	2,140	18.5	0.49	
	BH18	Groundwater	25	Mar 2022	7	30			3	0.06		0.81	0.2	0.20	< 0.01 <	0.01	6	113	113	4					6.90	236	20.1	1.52	
	BH19r	Groundwater	16	Mar 2022	91	83			22	0.04		0.48	0.1	1.67	0.05	0.52	27	258	258	98					7.20	924	19.4	3.43	
	BH21	Groundwater	23	Mar 2022	349	125			18	0.44		0.39	0.3	2.60	< 0.01 <	0.01	28	502	502	332					7.20	2,460	21.2	2.39	
	BH22	Groundwater	24	Mar 2022	186	129			22	0.08		0.41	0.3	2.13	< 0.01 <	0.01	21	428	428	230					7.10	1,740	18.6	2.13	
	SWP1	Surfacewater	1	Mar 2022	184	42	32	187	8	0.18	0.49	< 0.05	0.4	2.21	0.08	0.05	20	276	276	192	3.33		11	10.60	7.60	1,470	18.1		
	SWC_up	Surfacewater	20	Mar 2022	564	39	44	317	18	0.68	1.73	0.86	0.2	2.69	< 0.01 <	0.01	28	148	148	123	2.43		11	14.30	7.20	2,360	16.6		
	SWC_2	Surfacewater	19	Mar 2022	362	33	31	218	18	0.29	1.53	0.80	0.2	1.95	< 0.01	0.06	27	135	135	84	3.34		10		7.10	1,620	17.0		
	SWC_down	Surfacewater	21	Mar 2022	110	15	11	70	6	0.09	1.32	0.32	0.1	0.36	< 0.01	0.17	14	67	67	29	7.17		10	15.00	7.20	555	15.4		
	SWC_down_2	Surfacewater	22	Mar 2022	135	16	13	82	7	0.10	1.39	0.30	0.1	0.32	0.02	0.22	15	70	70	34	6.46		12	14.80	7.10	642	17.4		
Leac	hate Storage Tank	Leachate	2	Mar 2022	1,290	69			367	0.13	1.08		0.2	1020	< 0.10 <	0.10	498	3,620	4,030	< 10	1.32	15.7			8.80	11,200	22.0		
Investigation leve	Is apply to typical slightly-m	noderately disturbed systems	. Trigger Levels for 95% of sp	ecies. See ANZECC & ARM	ICANZ (2000) for g	uidance on appl	ying these levels to	different ecos	ystem conditions				1						1	1									

Investigation levels apply to typical slightly-moderately disturbed systems. Trigger Levels for 95% of species. See AVECCC 2000 - PUlpper and Lover Limit for NSW Lowland Rivers (Table 3.3.2), Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011). NEPM (2013 Table 14(4) Groundwist HSLs for vapour intrusion (Sanda Tan-4m)

					Qu	arterly	Water Mo	FABL I	E 9: To g Result	otal Co s - Marc	oncent h 2022: I	ration	e Resul	ts ing and V	Vaste D	Depot													
GILs -Trigger Values	for Freshwat	er (Protection of 95% of Sp	pecies) ^A		-	-	-	-	-	1.9	-	-	-	0.9 (pH 8)		0.7	-	-	-	-	-	-	-	-	6.5 - 8.5	2200	-	-	
GILs -Trigger Values	for Marine Wa	ater (Protection of 95% of	Species) ^A		-	-	-	-	-	-	-	-	-	0.91 (pH 8)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Australian Drinking W	/ater Guidelir	nes (2018) ^C		Health	-	-	-	-	-	0.5	-	-	1.5	-	3	50	-	-	-	-	-	-	-	-	6.5 - 8.5	-	-	-	
				Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5	-	-	-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	
Lab Repor Sample t.	No.	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	T otal Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	На	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
				Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	рН 0.01	μS/cm 1	℃ 0.1	mbgl -	
BH1	c	Groundwater	3	Jun 2022	831	128			200	0.09		8.53	0.4	302	0.02	< 0.10	176	2,800	2,800	< 1					6.70	7,350	24.9	2.78	
вна	3	Groundwater	5	Jun 2022	65	114			41	0.01		< 0.05	0.1	0.29	0.04	11.00	16	293	293	164					7.00	1,130	17.4	2.74	
BH4	ı	Groundwater	6	Jun 2022	142	141			18	0.14		3.88	0.1	3.65	< 0.01	0.16	15	390	390	172					7.00	1,480	18.7	3.94	
BHS	9	Groundwater	18	Jun 2022	515	161			60	0.36		4.59	0.4	64.8	< 0.01	0.02	57	1,380	1,380	239					6.70	4,270	17.9	2.69	
BH12	2r	Groundwater	17	Jun 2022	242	131			36	0.49		4.04	0.2	3.25	0.04	0.69	24	533	533	226					6.60	2,110	20.8	3.98	
BH1	3	Groundwater	10	Jun 2022	105	155			10	0.18		1.39	0.2	1.37	< 0.01	0.26	17	547	547	97					6.60	1,510	21.2	3.84	
BH1	4	Groundwater	11	Jun 2022	93	93			21	0.09		0.06	0.5	0.51	0.74	20.10	39	309	309	84					6.40	1,210	20.6	4.18	
BH1	5	Groundwater	7	Jun 2022	499	155			203	0.55		20.60	0.2	13.20	< 0.10	< 0.10	46	384	384	1,270					6.80	4,490	16.2	0.47	
BH1	8	Groundwater	25	Jun 2022	41	83			9	0.12		1.10	0.2	0.56	< 0.01	< 0.01	15	349	349	< 1					6.50	808	19.9	1.80	
BH1	Ðr	Groundwater	16	Jun 2022	80	89			23	0.07		0.88	0.2	2.32	0.02	< 0.01	22	284	284	97					7.20	1,020	18.6	4.31	
BH2	1	Groundwater	23	Jun 2022	308	112			16	0.41		0.31	0.4	4.15	< 0.01	< 0.01	27	568	568	297					7.00	2,500	21.4	2.72	
BH2	2	Groundwater	24	Jun 2022	224	150			22	0.12		0.34	0.2	6.77	< 0.01	< 0.01	52	688	688	102					6.80	2,130	18.8	2.41	
SWP	1	Surfacewater	1	Jun 2022	277	79	49	264	19	0.99	0.31	0.10	0.5	20.80	0.02	< 0.01	31	559	559	192	2.38		12	4.30	7.60	1,750	13.0		
swc_	up	Surfacewater	20	Jun 2022	971	50	70	526	20	0.09	1.22	0.06	0.2	0.29	0.02	1.13	8	124	124	188	9.29		7	14.90	7.30	2,740	10.8		
swc.	_2	Surfacewater	19	Jun 2022	1,150	55	82	630	25	0.10	2.09	0.08	0.2	0.51	0.02	1.09	9	134	134	212	9.25		26	23.70	7.40	3,280	10.9		
SWC_d	own	Surfacewater	21	Jun 2022	1,550	62	105	822	32	0.07	1.00	0.05	0.3	0.38	0.02	0.98	9	123	123	265	9.37		9	14.00	7.40	4,170	10.6		
SWC_do	wn_2	Surfacewater	22	Jun 2022	1,810	66	117	936	36	0.07	0.97	0.05	0.3	0.30	0.02	0.97	8	124	124	296	9.24		9	12.70	7.40	4,670	10.3		
Leachate Sto LP1	rage Tank	Leachate	2	Jun 2022	1,570	57			389	0.11	1.14		0.2	670	< 0.10	0.12	563	2,520	3,550	< 10	6.54	63.1			9.00	8,360	11.8		
SWP	1	Surfacewater	1	13/05/2022	230	64	42	227	17	0.30	< 0.05	< 0.05	0.4	15.80	0.16	0.19	29	435	435	186	4.45		23	19.90	7.90	1,590	17.6		Overflow Sample
SWP	1	Surfacewater	1	24/05/2022	262	77	49	274	22	0.90	0.23	< 0.05	0.6	22.40	0.06	0.03	33	549	549	182	3.62		7	11.90	7.60	2,150	15.8		Overflow Sample
Investigation levels apply ANZECC 2000 - pH Upper a	to typical sligh and Lower Limi	tly-moderately disturbed system t for NSW Lowland Rivers (Tab	ns. Trigger Levels for 95% ble 3.3.2).	of species. See ANZECC	& ARMCANZ (20	00) for guidanc	e on applying the	se levels to di	fferent ecosyster	m conditions.																			

NAZECC 2000 - pri upper and Lower Limit for Now Lowiano Rivers (table 3.3.2). Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011). NEPM (2013 Table 1A(4) Groundwater HSLs for vapour intrusion (Sand 2m-4m)

				Q	uarterly	T Water N	ABLE Ionitorir	10: T	otal C s - Marc	oncer	n tratio Dunmor	n Res e Recyc	ults ling and	Waste De	epot													
GILs -Trigger Values for Freshw	vater (Protection of 95% of	of Species) ^A							1.9				0.9 (pH 8)		0.7					-				6.5 - 8.5	2200			
GILs -Trigger Values for Marine	Water (Protection of 95%	% of Species) ^A											0.91 (pH 8)						-	-					•			
Australian Drinking Water Guide	elines (2018) ^c		Health	•	•	•	•	•	0.5		•	1.5	•	3	50	•	•	•	-					6.5 - 8.5	•	•		
		-	Aesthetic	250	-		180	-	0.1	0.3	0.3		0.5	-		-		-	250	-		-	5	6.5 - 8.5			-	
Lab Repor Sample No. t	Sample type	EPA No,	Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potas si um	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrito as N	Nitrato as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sul tate as SO4 - Turbidimetric	Dis solved Oxygen	Dis solved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	Н	Electrical Conductivity [Non Compensated]	Temperature	Standing Water Level	Comments
		1	Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	pH 0.01	µS/cm 1	°C 0.1	mbgl -	
BH1c	Groundwater	3	Sep 2022	940	125			208	0.11		7.76	0.4	376	< 0.01	< 0.01	194	2,540	2,540	< 10					6.80	7,360	25.3	2.91	
внз	Groundwater	5	Sep 2022	78	117			49	0.02		0.07	0.2	2.18	0.13	6.37	15	317	317	118					7.40	984	17.6	3.07	
BH4	Groundwater	6	Sep 2022	109	113			19	0.13		2.90	0.1	2.76	0.01	0.05	14	361	361	69					7.30	1,000	18.1	4.25	
ВН9	Groundwater	18	Sep 2022	381	177			65	0.53		0.70	0.4	130.0	0.05	0.02	85	1,650	1,650	12					7.20	3,330	15.9	2.85	
BH12r	Groundwater	17	Sep 2022	123	149			26	0.50		7.24	0.2	4.75	< 0.01	< 0.01	22	554	554	92					6.80	1,410	19.7	4.14	
BH13	Groundwater	10	Sep 2022	199	176			15	0.29		3.26	0.2	1.78	0.02	0.01	31	754	754	47					6.70	1,740	20.5	4.15	
BH14	Groundwater	11	Sep 2022	58	100			15	0.09		< 0.05	0.5	0.59	0.02	1.91	25	409	409	52					6.70	970	20.2	4.56	
BH15	Groundwater	7	Sep 2022	442	104			190	0.29		9.45	0.2	10.20	0.01	< 0.01	42	420	420	473					7.10	2,350	14.8	0.64	
BH18	Groundwater	25	Sep 2022	65	88			12	0.09		2.34	0.2	1.09	< 0.01	< 0.01	19	412	412	< 10					6.70	822	18.3	1.91	
BH19r	Groundwater	16	Sep 2022	101	88			36	0.08		1.19	0.2	3.11	0.02	0.04	21	308	308	51					7.40	838	17.6	4.60	
BH21	Groundwater	23	Sep 2022	400	135			20	0.60		0.44	0.3	4.85	< 0.01 ·	< 0.01	37	667	667	204					7.10	2,430	20.8	2.86	
BH22	Groundwater	24	Sep 2022	240	117			30	0.11		0.14	0.2	24.40	< 0.01 ·	< 0.01	50	646	646	113					7.00	1,810	17.3	2.45	
SWP1	Surfacewater	1	Sep 2022	93	52	19	77	10	0.07	0.05		0.1	1.82	0.40	2.06	19	225	225	44	8.70		9	17.90	7.60	585	12.1		
SWC_up	Surfacewater	20	Sep 2022	469	38	37	252	11	0.07	0.05		0.2	0.15	0.01	0.88	8	107	107	74	9.60		8	27.40	7.40	1,370	11.8		
SWC_2	Surfacewater	19	Sep 2022	671	43	47	338	15	0.06	0.05		0.2	0.46	0.01	0.85	8	106	106	95	9.01		8	27.20	7.40	1,740	12.7		
SWC_down	Surfacewater	21	Sep 2022	614	41	44	312	14	0.06	< 0.05		0.2	0.35	0.01	0.86	8	105	105	88	9.37		6	26.60	7.40	1,690	12.5		
SWC_down_2	Surfacewater	22	Sep 2022	754	43	52	381	16	0.05	< 0.05		0.2	0.19	0.01	0.84	8	103	103	104	9.54		9	25.90	7.40	1,990	12.5		
Leachate Storage Tank LP1	Leachate	2	Sep 2022	1,840	44			350	0.11	1.29		0.2	877	< 1.00	< 1.00	401	2,760	3,700	< 10	7.14	68.8			8.90	8,230	13.0		
SWP1	Surfacewater	1	21/10/2022	214	63	37	193	20		1.99	< 0.05	0.4	16.40	0.81	0.98	28	469	469	115	5.77		23		7.90	1,760	21.5		Overflow Sample
SWP1	Surfacewater	1	25/10/2022	178	62	33	175	20		0.76	< 0.05	0.4	15.80	0.67	1.04	23	361	361	104	4.24		17	14.20	7.90	1,550	18.9		Overflow Sample

Investigation twels apply is typical algebra, molecular distanced systems. Trager Levels for SPL of species. See AVEC/C & AVEC/AVE (200) for guidance on applying these levels to different ecosystem conditions. Newsglaption broke as taken from the taken brokes of the Avecated Distance Distance Desting. BMERC 2011. AVEP (2017) Take 14:40:00004etr 18:40. revenue introduction Distance Distances Desting. BMERC 2011.

SAMPLING QC DATA

TABLE 11: Duplicate Groundwater Sample Results and QC Data

Lab Report.						
Sample No.				BH22	GWDuplicate	
Sample type				Groundwater	GWQC	
EPA No,				24	QC1	KPD
Date Sampled				6/09/2022	6/09/2022	
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	240	244	2.48
Calcium	mg/L	1	5	117	127	12.30
Potassium	mg/L	1	5	30	32	9.68
Manganese	mg/L	0.001	0.005	0.108	0.119	14.54
Dissolved Iron	mg/L	0.05	0.25	0.14	0.15	🕑 10.34
Fluoride	mg/L	0.1	0.5	0.2	0.2	0.00
Ammonia as N	mg/L	0.01	0.05	24.40	24.20	1.23
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Total Organic Carbon	mg/L	1	5	50	51	2.97
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	646	652	1.39
Total Alkalinity as CaCO3	mg/L	1	5	646	652	1.39
Sulfate as SO4 - Turbidimetric	mg/L	1	5	113	112	1.33
рН	pН	0.01	0.05	7.00	7.00	0.00
Electrical Conductivity (Non Compensated)	μS/cm	1	5	1,810	1,810	O .00
Temperature	°C	0.1	0.5	17.3	17.3	0.00
Standing Water Level	mbgl	-		2.5	2.5	0.00

TABLE 12: Duplicate Surface Water Results and QC Data

Lab Report.						
Sample No.				SWC_UP	SWDuplicate	
Sample type				Surfacewater	OffSiteSWQC	
EPA No,				20	QC2	RPD
Date Sampled				5/09/2022	5/09/2022	
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	469	637	8 45.57
Calcium	mg/L	1	5	38	43	🕑 18.52
Potassium	mg/L	1	5	11	15	😵 46.15
Manganese	mg/L	0.001	0.005	0.068	0.058	23.81
Total Iron	mg/L	0.05	0.25	0.05	0.06	27.27
Dissolved Iron	mg/L	0.05	0.25			
Fluoride	mg/L	0.1	0.5	0.2	0.2	0.00
Ammonia as N	mg/L	0.01	0.05	0.15	0.46	😵 152.46
Nitrite as N	mg/L	0.01	0.05	0.01	0.01	0.00
Nitrate as N	mg/L	0.01	0.05	0.88	0.86	3.45
Nitrite + Nitrate as N	mg/L	0.01	0.05	0.89	0.87	3.41
Total Organic Carbon	mg/L	1	5	8	8	0.00
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	107	112	6.85
Total Alkalinity as CaCO3	mg/L	1	5	107	112	6.85
Sulfate as SO4 - Turbidimetric	mg/L	1	5	74	93	😣 34.13
Dissolved Oxygen	mg/L	0.01	0.05	9.60	9.60	0.00
pH	pН	0.01	0.05	7.40	7.40	0.00
Electrical Conductivity (Non Compensated)	µS/cm	1	5	1,370	1,370	0.00
Temperature	°C	0.1	0.5	11.8	11.8	0.00

CHARTS

21/10/2022

5/10/2022

7/06/2022 5/09/2022

4/05/2022

100

80

60

40

20

0

1/11/2017 1/02/2018

1/05/2018 1/08/2018 13/11/2018 13/02/2019

11/03/2020 17/06/2020 15/09/2020 15/12/2020 17/03/2021

SWP1

14/09/2021

17/06/2021 7/12/2021 10/03/2022 13/05/2022

21/08/2019 17/12/2019

14/05/2019

Charts 46-60 Leachate Water Quality Charts

7

6

5

3

2

1 0

11112017 13/02/2019 17/12/2019 11/03/2020

1710612020 1510912020

15/12/2020

Leachate Storage Tank LP1

17/03/2021

17106/2021 14/09/2021

711222021 1103/2022 106/2022

510912022

14/05/2019 21/08/2019

Leachate Storage Tank LP1

APPENDICES

Appendix A

EPL 5984 Sampling Point Summary (NSW EPA, 02/2022)

2	Leachatemonitoring	Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring	BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring	BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring	BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring	BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring	BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring	BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring	BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring	BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).

18	Groundwater monitoring	BH9 - as shown on the drawing
		titled "Shellharbour City Council -
		Figure no. 1" dated July 2019 (EPA
		Ref. no. DOC19/1027702).
19	Surface Water Monitoring	SWC_2 - as shown on the drawing
		Dunmore, NSW - Site Layout -
		Figure no. 1" dated July 2019 (EPA
20	Curface Mater Manitering	Ref. no. DOC19/1027702).
20	Surface water Monitoring	drawing titled "Shellharbour City
		Council - Dunmore, NSW - Site
		Layout - Figure no. 1" dated July
		2019 (EPA Ref. no. DOC19/1027702).
21	Surface Water Monitoring	SWC_DOWN - as shown on the
		drawing titled "Shellharbour City
		Layout - Figure no. 1" dated July
		2019 (EPA Ref. no.
00	Curfe e e Mater Maniteria e	DOC19/1027702).
22	Surface water Monitoring	drawing titled "Shellharbour City
		Council - Dunmore, NSW - Site
		Layout - Figure no. 1" dated July
		DOC19/1027702).
23	Groundwater Monitoring	BH21 - as shown on drawing titled
		"Monitoring Point Location Plan - Dunmore Recycling and Waste
		Depot - EPL No. 5984" prepared by
		Cardno and attached to
		(EPA ref. no. DOC20/317779).
24	Groundwater monitoring	BH22 - as shown on drawing titled
		Dunmore Recycling and Waste
		Depot - EPL No. 5984" prepared by
		Cardno and attached to
		(EPA ref. no. DOC20/317779).
25	Groundwater monitoring	BH18 - as shown on drawing titled
		"Monitoring Point Location Plan -
		Depot - EPL No. 5984" prepared by
		Cardno and attached to
		correspondence dated 7 April 2020
		(EPA ref. no. DOC20/317779).

Appendix B

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples Sydney 117 Westgers R., Grothele NSW 2175
 Breatane, & Stata St. Stafferd QLD 4063
 Pt 01 S704 5565 E semi-valor convex galaxembol convert.
 Neocastle, S. Rossgue R.F. Weinhink, NSW 2055
 Towneytile: 14-15 Depined Ct Berley CLD 43 C.
 Ph. 02 1054 S13 E sombel several addression in convert.

nd OLD 4053 전 Melbourne, 2-4 Wiketai Ro, Sening ade ViC 3171 ane 양 usersite com Ph. G., 6540 9650 원, Samples melbourneg) acements Borle OLD 44 S. 전 Adefailed St. Sama R.A. Postav S.A. 3097 memericalizationes Ph. 05 2059 1000 B. Baldet ale Data Status Terr

Parth TC Hos Why, Manga WA 8090 (1)
 Ph. Cs 9200 7650 S. Cantalas pellhiĝisterniko com
 Claunoeston, 21 Welliopor St. Launoeston TAS 7260 (2)
 Ph. C3 4251 2155 S. Schart zeston/stark vije zon. (1)

		I										5.6(Mess)	a a state and the second s	
CLIENT:	Shellharbour City Council	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UTURNAROUND REQUIREMENTS: Standard TAT (List due date): Standard TAT may be known for some tests									FOR I	ABORATORY USE C	INLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSV	W 2500 (.g., Ultra	Trace Organics)	Non St	andard or urg	ent TAT (L	ist due date)				Custod Free ic	ly Seal Intact? e / frozen ice bricks prese	ntubon
PROJECT:	Dunmore Quarterly Ground Wate	ers EPL	ALS QU	OTE NO.: WO/030	19 TENDE	:R					ER (Circle	receipt	3	Possiti Yes No NA
ORDER NUMBER:										34	5 6	7 Rando	m Sample remperature o	ik.n
		SAMPLER MO	BILE		RELINQUIS	SHED BY:		REC	EIVED BY:	J 4	5 0	RELINQUIS	HED BY:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORMAT	(or defa	ault):	Robe	-+ 12	Jah i		had	E				
Email Reports to :					DATE/TIME	ł		DATE	E/TIME:	\ 7		DATE/TIME	:	DATE/TIME:
Email Invoice to :	· · · · · · · · · · · · · · · · · · ·				619	126		6	1912	2				
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	SAL: CC reports to:							-					
ALS USE ONLY	SAMP MATRIX: S	PLE DETAILS Solid(S) Water(W)		CONTAINER INFO	RMATION		ANALY	SIS REQUIR	ED includi	ng SUITES ((NB. Suite Co ottle required) o	des must bø list r Dissolved (field fi	ed to attract suite price)	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIN (refer to codes below)	VE)	TOTAL BOTTLES	monia	-2A (Alka, I, Cl, Fl) ared Ca, K	(3	solved Fe &	4 (NO2, 3)	ld to ofins	-	Comments on likely contaminant levels, dilutions or samples requiring specific QC analysis etc.
							Am	So4 Filt	ě.	Mn	L N	Ser Eur	-=	
	BH1C	6.9.22 8:30	W				~	✓	1	1	1			Field Tests - pH, EC, Temp & SWL
	внз	1 12:50	W				1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH4	13:05	w				1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	ВН9	8:00	W				1	1	1	✓	1			Field Tests - pH, EC, Temp & SWL
	BH12R	11:25	w				1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH13	1:45	W				1	✓	1	-	1			Field Tests - pH, EC, Temp & SWL
	BH14	12:35.	W				4	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH15	11:00	w				✓	1	1	1	1			Field Tests - pH, EC, Temp & SWI
	BH19R	13:25	W				1	1	1	1	~			Field Tests - pH, EC, Temp & SWL
	ВН18	10:10	W				1	✓	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH21	15:35	W	- Environmental Div	dolog		1	1	1	1	1			Field Tests - pH, EC, Temp & SWL
	BH22	9:00	N	Wollongong	ASICT		4	1	1	1	×		0	Field Tests - pH, EC, Temp & SWI
	Duplicate	9:00	N	Work Order Referen	nce ೧ԴՉ	• -	✓	1	1	1	-			Field Tests - pH, EC, Temp & SWI
	Triplicate	9:00	v		000						·	1		
				Telephone : 02 42253125										

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC

V = VOA Vial HCl Preserved; VB = VOA Vial Sodium Bisulphate Preserved: VS = VOA Vial Sulfuric Preserved; A. Z = Zing Agelate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag. Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic ar Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass;

CERTIFICATE OF ANALYSIS

Work Order	EW2204038	Page	: 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	: Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 06-Sep-2022 15:47
Order number	: 147649	Date Analysis Commenced	: 06-Sep-2022
C-O-C number	:	Issue Date	23-Sep-2022 15:52
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS		Accreditation No. 975
No. of samples received	: 14		Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate on sample 1 & 10 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling Via High Flow & Bailer Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sample collection of Ground Waters by in-house EN67 where the "surface layer of the aquifer was sampled".
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ing date / time	06-Sep-2022 08:30	06-Sep-2022 12:50	06-Sep-2022 13:05	06-Sep-2022 08:00	06-Sep-2022 11:25
Compound	CAS Number	LOR	Unit	EW2204038-001	EW2204038-002	EW2204038-003	EW2204038-004	EW2204038-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.8	7.4	7.3	7.2	6.8
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	µS/cm	7360	984	1000	3330	1410
Compensated)								
EA116: Temperature		0.5	*0	05.0	47.0	40.4	45.0	10 7
Temperature		0.5	- <u>C</u>	25.3	17.6	18.1	15.9	19.7
ED037P: Alkalinity by PC Titrator		-						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2540	317	361	1650	554
Total Alkalinity as CaCO3		1	mg/L	2540	317	361	1650	554
ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	118	69	12	92
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	940	78	109	381	123
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	125	117	113	177	149
Potassium	7440-09-7	1	mg/L	208	49	19	65	26
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.105	0.022	0.130	0.528	0.502
Iron	7439-89-6	0.05	mg/L	7.76	0.07	2.90	0.70	7.24
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.2	0.1	0.4	0.2
EK055G: Ammonia as N by Discrete Analy	vser							
Ammonia as N	7664-41-7	0.01	mg/L	376	2.18	2.76	130	4.75
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.13	0.01	0.05	<0.01
EK058G: Nitrate as N by Discrete Analysi	er							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	6.37	0.05	0.02	<0.01
EK059G: Nitrite plus Nitrate as N (NOx) t	ov Discrete Ana	lvser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	6.50	0.06	0.07	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	194	15	14	85	22
			-					

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ng date / time	06-Sep-2022 08:30	06-Sep-2022 12:50	06-Sep-2022 13:05	06-Sep-2022 08:00	06-Sep-2022 11:25
Compound	CAS Number	LOR	Unit	EW2204038-001	EW2204038-002	EW2204038-003	EW2204038-004	EW2204038-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	2.91	3.07	4.25	2.85	4.14

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	06-Sep-2022 11:45	06-Sep-2022 12:30	06-Sep-2022 11:00	06-Sep-2022 13:25	06-Sep-2022 10:10
Compound	CAS Number	LOR	Unit	EW2204038-006	EW2204038-007	EW2204038-008	EW2204038-009	EW2204038-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.7	6.7	7.1	7.4	6.7
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	µS/cm	1740	970	2350	838	822
Compensated)								
EA116: Temperature								
Temperature		0.5	°C	20.5	20.2	14.8	17.6	18.3
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	754	409	420	308	412
Total Alkalinity as CaCO3		1	mg/L	754	409	420	308	412
ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	47	52	473	51	<10
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	199	58	442	101	65
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	176	100	104	88	88
Potassium	7440-09-7	1	mg/L	15	15	190	36	12
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.288	0.094	0.290	0.082	0.087
Iron	7439-89-6	0.05	mg/L	3.26	<0.05	9.45	1.19	2.34
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.5	0.2	0.2	0.2
EK055G: Ammonia as N by Discrete Anal	yser							
Ammonia as N	7664-41-7	0.01	mg/L	1.78	0.59	10.2	3.11	1.09
EK057G: Nitrite as N by Discrete Analyse	r							
Nitrite as N	14797-65-0	0.01	mg/L	0.02	0.02	0.01	0.02	<0.01
EK058G: Nitrate as N by Discrete Analyse	er							
Nitrate as N	14797-55-8	0.01	mg/L	0.01	1.91	<0.01	0.04	<0.01
EK059G: Nitrite plus Nitrate as N (NOx) b	oy Discr <u>ete Ana</u>	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.03	1.93	0.01	0.06	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	31	25	42	21	19

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
	Sampling date / time			06-Sep-2022 11:45	06-Sep-2022 12:30	06-Sep-2022 11:00	06-Sep-2022 13:25	06-Sep-2022 10:10
Compound	CAS Number	LOR	Unit	EW2204038-006	EW2204038-007	EW2204038-008	EW2204038-009	EW2204038-010
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	4.15	4.56	0.64	4.60	1.91

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	06-Sep-2022 10:35	06-Sep-2022 09:00	06-Sep-2022 09:00	
Compound	CAS Number	LOR	Unit	EW2204038-011	EW2204038-012	EW2204038-013	
				Result	Result	Result	
EA005FD: Field pH							
pH		0.1	pH Unit	7.1	7.0	7.0	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	μS/cm	2430	1810	1810	
EA116: Temperature							
Temperature		0.5	°C	20.8	17.3	17.3	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	667	646	652	
Total Alkalinity as CaCO3		1	mg/L	667	646	652	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	204	113	112	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	400	240	244	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	135	117	127	
Potassium	7440-09-7	1	mg/L	20	30	32	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.597	0.108	0.119	
Iron	7439-89-6	0.05	mg/L	0.44	0.14	0.15	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.2	0.2	
EK055G: Ammonia as N by Discrete Anal	lyser						
Ammonia as N	7664-41-7	0.01	mg/L	4.85	24.4	24.2	
EK057G: Nitrite as N by Discrete Analyse	er						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Analys	er						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	37	50	51	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampli	ng date / time	06-Sep-2022 10:35	06-Sep-2022 09:00	06-Sep-2022 09:00	
Compound	CAS Number	LOR	Unit	EW2204038-011	EW2204038-012	EW2204038-013	
				Result	Result	Result	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	2.86	2.45	2.45	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

ENT:	Sheilharbour City Council		TURNARC	OUND REQUIREMENTS :	Standa	ard TAT (List	due date):					FORL	ABORATORY USE O	NLY (Circle)
ICE:	41 Burelii St WOLLONGONG NSW	2500	(Standard TA	AT may be longer for some tests	Non St	andard or ur	gent TAT (Li	st due date)	:			Custody	Seel Intact?	(Yes) No
	Dunmore Quarterly Leachate		ALS QUO	TE NO.: WO/0	30/19 TENDE	R	·		COC SEQU	ENCE NUME	BER (Circle)	Free ice	/ frozen ice bricks prese	nt upon Yes No
ER NUMBER:						·		coc:	1 2	34	56	7 Rahdom	Sample Temperature of	n Receipt:
ECT MANAGER:	Joel Culton		.L					OF:	1 2	34	56	7 Other or	smment.	4.5
	bout Dha	SAMPLER N	OBILE:		RELINQUIS	SHED BY:		REC	ENED BY:	1		RELINQUISH	ED BY:	RECEIVED BY:
emailed to ALS?	(YES / NO)	EDD FORM	AT (or defau	ilt):	Dobe	e-7 1	Dehr	ົ້	Ane	fa				
I Reports to :					DATE/TIME			DAT				DATE/TIME:		DATE/TIME:
I Invoice to :					5.9	.26	12:1	5	5.4	22				
IMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to:												-
ALS USE ONLY	SAMPLI MATRIX: So	E DETAILS lid(S) Water(W)		CONTAINER INF	ORMATION		ANALY	SIS REQUIR 6 Metais are rec	ED includir	ng SUITES Ital (unfiltered b	(NB. Suite Co pottle required) o	des must be liste • Dissolved (field filt	d to attract suite price) ered bottle required).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer lo codes belo	TIVE w/)	TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, CI, FI) Filtered Ca, K	20	Total Fe & Mn	NT-4 (NO2, NO3)			Comments on likely contaminant levels, dui or samples requiring specific QC analysis e
	Leachate Storage Tank - LP1	Gall and	z∙ w			<u>.</u>	~	√	1					Field Tests - pH, EC, Temp &
		0 1 40										-		
								-				-		
							1							
													Envir	onmental Division
													Wolld	ongong
	aad an												We	rk Order Reference
			-					-						W2204034
									· ·					
							ļ						<i></i>	
													Teleph	one : 02 42253125
						1								
							1						ě	
							-		+	-				
												_		
	,					50	ļ	1						
				at the second second second						1				

CERTIFICATE OF ANALYSIS

Work Order	EW2204034	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 05-Sep-2022 13:15
Order number	: 147649	Date Analysis Commenced	: 05-Sep-2022
C-O-C number	:	Issue Date	12-Sep-2022 19:42
Sampler	: Robert DaLio		HATA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		Accorditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK059G: LOR raised for NOx on sample 1 due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix
- EK057G: LOR raised for Nitrite due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage	 	
				I P1		
		Sampli	ng date / time	05-Sep-2022 09:40	 	
Compound	CAS Number	LOR	Unit	EW2204034-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.9	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	8230	 	
EA015: Total Dissolved Solids dried at 18	0 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5210	 	
EA116: Temperature						
Temperature		0.5	°C	13.0	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	946	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2760	 	
Total Alkalinity as CaCO3		1	mg/L	3700	 	
ED041G: Sulfate (Turbidimetric) as SO4 2-	- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1840	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	44	 	
Potassium	7440-09-7	1	mg/L	350	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.106	 	
Iron	7439-89-6	0.05	mg/L	1.29	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discrete Analy	yser					
Ammonia as N	7664-41-7	0.01	mg/L	877	 	
EK057G: Nitrite as N by Discrete Analyse	r					
Nitrite as N	14797-65-0	0.01	mg/L	<1.00	 	
EK058G: Nitrate as N by Discrete Analyse	er					
Nitrate as N	14797-55-8	0.01	mg/L	<1.00	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	by Discrete Ana	lyser				

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	05-Sep-2022 09:40	 	
Compound	CAS Number	LOR	Unit	EW2204034-001	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx) t	by Discrete Ana	lyser - Co	ntinued			
Nitrite + Nitrate as N		0.01	mg/L	<1.00	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	401	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	7.14	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	68.8	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CHAIN OF CUSTODY (1. Sydney: 200 Withoutsey, Roy George New 2008 Ph. 50(808) 4006 El protoleo escretação acestro com ALS Laboratory: please tick ->

El Brisbane, 32.3 who Or Startics CLD 4052 (Pro) 3243-7201 Elsandies massa #r@akers olicimi Pri Jos Poly Contractor Contractor Space (2015) Disputation 3 Recognite Ref. Walker (2015) 2015 (1) 25 (2015) 2 Recognite Ref. Walker (2015) 2015 (1) 25 (2015) 2 Recognite Contractor (2015) 2 Ref. (2015) 2 R

III - Malbourne, Dia Wastat Rei Schlagrafe VIC 9-71 Ph Co 6549-6500 El campleo ne bol pe Balsenero cóm The defaults of the second control of the second sec

C) Perth R. Hot Way, Melega WA 2000 Ph. Charley 1995 El contract outral Electrons on the Di Launceston: 07 Wallington St. Launceston 745 7260 Ph. 07 6301 2365 € I aunceston @priservice.com

	LIENT: Shellharbour City Council TURNAROUND REQUIREMENTS : Standard TAT (List du									FOR LABORATORY USE ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW 2500	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	^s D Non Standard or urgent TAT (List due	st due date):						Cluetody Seal Infact? //es_ No N/A
PROJECT:	Dunmore Quarterly Leachate	ALS QUOTE NO.: WO	LS QUOTE NO.: WO/030/19 TENDER			BEQUEN	CE NUI	MBER	(Circle	receipt?
ORDER NUMBE	R:	_		COC:	1	2	3	4 :	56 ; 6	6 7 Random Sample Lemperature du receipt. G
PROJECT MAN	AGER: Joel Culton					<u>~</u>				
SAMPLER:	Robert Dalio SAME	LER MOBILE:		RECE		BY:	1			RELINQUISHED BY: RECEIVED BY:
COC emailed to	ALS? (YES / NO) EDD I	ORMAT (or default):	16bert Wahis		M,	ne	ŦG			
Email Reports to	0:			DATE	STIME S	19	12	.2		DATE/TIME: DATE/TIME.
Email Invoice to):		5926 12:19	<u> </u>		<u> </u>				
COMMENTS/SP	ECIAL HANDLING/STORAGE OR DISPOSAL: CC repo	ts to:								
			ANALYSIS RI	EQUIRI	ED inc	:luding :	SUITE	S (N8.	Suite Cr	e Codes must be listed to attract suite price) Additional Information

ALS USE ONLY	SAMPLE MATRIX: Sol	DETAILS id(S) Water(W)		CONTAINER INFORMATION Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).						Additional Information		
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	TOC	Total Fe & Mn	NT-4 (NO2, NO3)	-	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	Leachate Sump 5.	9:22 9:35	w			1	1	1	1			Field Tests - pH, EC, Temp & DO
									-			
	-			· .								
												-
								1 1				
											Environme Wollongon Work Orde EW2	ntal Division
											Telephone : 02 4	12253126
-							-					•
				τοι	10							
Water Container Codes: V = VOA Vial HCI Preserve Z = Zinc Acetate Preserve	P = Unpreserved Plastic; N = Nitric Prese red; VB = VOA Vial Sodium Bisulphate Pres al Bottle; E = EDTA Preserved Bottles; ST =	erved Plastic; ORC = Nitric Preser erved; VS = VOA Vial Sulfurig Pre sterile Bottle; ASS = Plastic Bag	ved ORC: SH = served; AV = Ai for Acid Sulpha	Sodium Hydroxide/Cd Preserved; S = Sodii rfreight Unpreserved Vial SG = Sulfuric Pres rte Soils: B = Unpreserved Bag.	m Hydroxide P erved Amber C	reserved Pla Slass; H ≍ I	istic; AG = Aml HCI preserved I	per Glass Un¢ Plastic; HS ≕	reserved; AF HCI preserve	 Airfreight Unpres d Speciation bottle 	erved Plastic ; SP = Sulfuric Preserved Plastic;	F = Formaldehyde Preserved Glass;

CERTIFICATE OF ANALYSIS

Work Order	EW2204033	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate	Date Samples Received	: 05-Sep-2022 13:16
Order number	: 147649	Date Analysis Commenced	: 05-Sep-2022
C-O-C number	:	Issue Date	12-Sep-2022 19:42
Sampler	: Robert DaLio		HATA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		Accorditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G: LOR raised for Nitrite due to sample matrix.
- ED041G: LOR raised for Sulfate due to sample matrix
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Sump	 	
		Sampli	ng date / time	05-Sep-2022 09:35	 	
Compound	CAS Number	LOR	Unit	EW2204033-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.8	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	8570	 	
EA015: Total Dissolved Solids dried at	180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5320	 	
EA116: Temperature						
Temperature		0.5	°C	14.2	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	896	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2760	 	
Total Alkalinity as CaCO3		1	mg/L	3660	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	1840	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	49	 	
Potassium	7440-09-7	1	mg/L	369	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.127	 	
Iron	7439-89-6	0.05	mg/L	1.33	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discrete An	alyser					
Ammonia as N	7664-41-7	0.01	mg/L	792	 	
EK057G: Nitrite as N by Discrete Analy	ser					
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Analy	/ser					
Nitrate as N	14797-55-8	0.01	mg/L	124	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	124	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Sump	 	
	Sampling date / time		05-Sep-2022 09:35	 	 	
Compound	CAS Number	LOR	Unit	EW2204033-001	 	
				Result	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	467	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	2.00	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	19.7	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 \pm 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CHAIN OF CUSTODY

ALS Laboratory: please tick →

II Sydnay: 277 Anadozek Rd. Simibilerid NGW 2176 III Brisbane 32 Sharel St. Statford OLO 4045 Ph. 02 8751 8655 E samples, sydnaydgateerviro com Ph.07 3243 7222 E samples brisbane@aiserviro com Ph.07 3243 7222 E samples brisbane@alserwinc.com Chi & Order Cool & Sampanacopura Spaces into order Newsostile: 5 Roseagum Rd. Waterback NS/Y 2304 Ph 02 4063 3432 E samples newcastia@alsonatic cont Ph 02 4063 3432 E samples newcastia@alsonatic cont

[] Melbourne: 2-1 Westell Ro. Springvale VIC 317.1 Part 1 state (380) Frishmalas melbourge@alsegveb.com Adelaide: 2-1 Suma Rd. Poeraka SA 5095 Ph. CA 9350 0800 E adelaide@alseman.com

CI Parth 10 Hod Way, Malaua W& 6090 Pi- n8 0266 7665 E: samules pediv@ (server).com E Launceston: 27 Wellington St. Lauricestor TAS 7250 Print G3 6331 2153 E. Jaunceston@alsenviro.com

()						FOR LABORATORY USE ONL	Y (Circle)
CLIENT:	Shellharbour City Council	TURNAROUND REQUIREMENTS :	Standard IAT (List due date):				
OFFICE:	41 Burelli St WOLLONGONG NSW 2500	(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)	Non Standard or urgent TAT (List	due date):		Free ice / frozen ice bricks present up	
PROJECT:	Dunmore Quarterly Surface Waters EPL	ALS QUOTE NO .: WO/030/19 TEN	VDER	COC SEQUE	ENCE NUMBER (Circle	e) receipt?	
ORDER NUMBER	t.				3 4 5 6	7 Random Sample Temperature on Ne	eepr 43
PROJECT MANAG	GER: Joel Culton			OF: 1 2	<u>345 t</u>		
SAMPLER:	Robert Dalis SAMPL	.ER MOBILE:	RELINQUISHED BY:	RECEIVED BY:	1	RELINQUISTED BY:	
COC emailed to A	ALS? (YES / NO) EDD F	ORMAT (or default):	- 1000 - 1000	* Hnet	5		DATE/TIME
Email Reports to	:			- CA	27-		
Email Invoice to :	· · · · · · · · · · · · · · · · · · ·		3.9.26, 12.1	2101.			<u> </u>
COMMENTS/SPE	CIAL HANDLING/STORAGE OR DISPOSAL: CC report	rts to:					
Salaria and Andrews and Solaria				3 REOLURED includin	nd SUITES (NB. Suite C	odes must be listed to attract suite price)	

ALS USE ONLY	SAMPL MATRIX: Sc	E DETAILS blid(S) Water(W)		CONTAINER INFORMATION	ON	Where	Metals are requi	ired, specify Tot	al (unfiltered bo	ttle required) of	Dissolved (field	filtéred bottle required)	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	TSS	NT-1, NT-2A (Ionic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NO3	TSS, TDS, TOC, Total Mn	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SWP1	51612 104	w			4	1	1	1				Field Tests - pH, EC, DO & Temp
	SWC 2	8:5	w				1		1	1	1	 ✓ 	Field Tests - pH, EC, DO & Temp
	SWC UP	\$'00	w				4		~	1	1	4	Field Tests - pH, EC, DO & Temp
	SWC DOWN	2'2	w				1		1	1	1	~	Field Tests - pH, EC, DO & Temp
	SWC DOWN 2	X:1=	ş w				1		4	1	1	1	Field Tests - pH, EC, DO & Temp
	Duplicate	8.0	w				1		1	1	1	~	Field Tests - pH, EC, DO & Temp
											Enviro Wollor Wort	nmental D ngong < Order Refe N2204	rence 4032
					912AL 10								
Water Container Codes: V = VOA Vial HCI Preserv Z = Zinc Acetale Preserve	P = Unpreserved Plastic; N = Nitric Prese red; VB = VOA Vial Sodium Bisulphate Prese ed Bottle; E = EDTA Preserved Bottles; ST =	rved Plastic: ORC = Nitric Preserve erved; VS = VOA Vial Sulfuric Prese Sterile Bottle; ASS = Plastic Bag fr	ed ORC; SH = erved; AV = Airf or Acid Sulphate	Sodium Hydroxide/Cd Preserved; S = Sodi reight Unpreserved Vial SG = Sulfuric Pres Soils: B = Unpreserved Bag.	um Hydroxide Pres served Amber Glas	erved Plastic ss; H = HCl	c; AG = Amber preserved Plas	Glass Unpres stic: HS = HC	served; AP - A I preserved S	irfreight Unp peciation bot	Telephor	ne : 02 42253125	'' ■ ■

CERTIFICATE OF ANALYSIS

Work Order	EW2204032	Page	: 1 of 7
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 05-Sep-2022 13:20
Order number	: 147649	Date Analysis Commenced	: 05-Sep-2022
C-O-C number	:	Issue Date	: 12-Sep-2022 19:41
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		Accordition No. 925
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	05-Sep-2022 10:05	05-Sep-2022 08:50	05-Sep-2022 08:00	05-Sep-2022 08:20	05-Sep-2022 08:15
Compound	CAS Number	LOR	Unit	EW2204032-001	EW2204032-002	EW2204032-003	EW2204032-004	EW2204032-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.6	7.4	7.4	7.4	7.4
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	585	1740	1370	1690	1990
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		1270	990	1260	1410
EA025: Total Suspended Solids dried at	104 ± 2°C							
Suspended Solids (SS)		5	mg/L	9	8	8	6	9
EA045: Turbidity								
Turbidity		0.1	NTU	17.9	27.2	27.4	26.6	25.9
EA116: Temperature								
Temperature		0.5	°C	12.1	12.7	11.8	12.5	12.5
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	225	106	107	105	103
Total Alkalinity as CaCO3		1	mg/L	225	106	107	105	103
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	44	95	74	88	104
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	1	mg/L	93	671	469	614	754
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	52	43	38	41	43
Magnesium	7439-95-4	1	mg/L	19	47	37	44	52
Sodium	7440-23-5	1	mg/L	77	338	252	312	381
Potassium	7440-09-7	1	mg/L	10	15	11	14	16
EG020F: Dissolved Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.05	0.05	0.05	<0.05	<0.05
EG020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.067	0.060	0.068	0.058	0.050
Iron	7439-89-6	0.05	mg/L	0.96	1.71	2.01	1.84	1.24
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.2	0.2	0.2	0.2

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	05-Sep-2022 10:05	05-Sep-2022 08:50	05-Sep-2022 08:00	05-Sep-2022 08:20	05-Sep-2022 08:15
Compound	CAS Number	LOR	Unit	EW2204032-001	EW2204032-002	EW2204032-003	EW2204032-004	EW2204032-005
				Result	Result	Result	Result	Result
EK055G: Ammonia as N by Discrete Anal	yser							
Ammonia as N	7664-41-7	0.01	mg/L	1.82	0.46	0.15	0.35	0.19
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	0.01	mg/L	1.80	0.46	0.15	0.35	0.19
EK057G: Nitrite as N by Discrete Analyse	ə r							
Nitrite as N	14797-65-0	0.01	mg/L	0.40	0.01	0.01	0.01	0.01
EK058G: Nitrate as N by Discrete Analys	er							
Nitrate as N	14797-55-8	0.01	mg/L	2.06	0.85	0.88	0.86	0.84
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Anal	yser						
Nitrite + Nitrate as N		0.01	mg/L	2.46	0.86	0.89	0.87	0.85
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	8.04	23.0	16.9	21.2	25.5
Ø Total Cations		0.01	meq/L	7.76	21.1	16.2	19.6	23.4
ø Ionic Balance		0.01	%	1.72	4.36	2.19	4.05	4.26
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	19	8	8	8	8
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	8.70	9.01	9.60	9.37	9.54

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	05-Sep-2022 08:00	 	
Compound	CAS Number	LOR	Unit	EW2204032-006	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.4	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	1370	 	
EA015: Total Dissolved Solids dried at 1	80 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	1280	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	9	 	
EA045: Turbidity						
Turbidity		0.1	NTU	26.3	 	
EA116: Temperature						
Temperature		0.5	°C	11.8	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	112	 	
Total Alkalinity as CaCO3		1	mg/L	112	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	93	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	637	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	43	 	
Magnesium	7439-95-4	1	mg/L	47	 	
Sodium	7440-23-5	1	mg/L	337	 	
Potassium	7440-09-7	1	mg/L	15	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	0.06	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.058	 	
Iron	7439-89-6	0.05	mg/L	1.65	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Samplii	ng date / time	05-Sep-2022 08:00	 	
Compound	CAS Number	LOR	Unit	EW2204032-006	 	
				Result	 	
EK055G: Ammonia as N by Discrete Analy	yser					
Ammonia as N	7664-41-7	0.01	mg/L	0.46	 	
EK055G-NH4: Ammonium as N by DA						
Ammonium as N	14798-03-9_N	0.01	mg/L	0.46	 	
EK057G: Nitrite as N by Discrete Analyse	ə r					
Nitrite as N	14797-65-0	0.01	mg/L	0.01	 	
EK058G: Nitrate as N by Discrete Analys	er					
Nitrate as N	14797-55-8	0.01	mg/L	0.86	 	
EK059G: Nitrite plus Nitrate as N (NOx) b	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	0.87	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	22.1	 	
Ø Total Cations		0.01	meq/L	21.0	 	
Ø Ionic Balance		0.01	%	2.52	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	8	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	9.60	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

Appendix C

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

CHAIN OF CUSTODY

ALS Laboratory: please tick 🔿

C. D. Ortow doop a point revenue paragraphic control of the processing of the procesing of the processing o

 Sydney 277 Woodcark Rd, Smithileti NSW 2176
 Brisbare 32 Shard St Stafford CLO 4053
 Ph 02 8754 3555 Escandes cydney@asenviro.com
 Pho7 3243 7222 E complex briceare@alconeirc Ph:07.3243.7222 E samples hnseare@alsonviro.com C. Adelaide: 2-1 Burns Rd. Pooraka SA 5095 Ph. 08 8359 0800 E.adelaida@alsonviru.com

□ Perth. 10 Hod Way, Malaga WA 6090 역= 08 0209 7656 El samolas, perti-@alserrano.com EL Launceston: 27 Wellington St. Launceston TAS 7250 Pts 03 6331 2168 E Taurceston@elsenvio.com

ALS	ALS Laboratory. please lick > Ph.o.:	1964 3433 6 samples novcastle@alservirii.com Philly 4796 bacu	E (Charlen and Charles States and Charles States and Charles and Charles States and Charles and Charle		FOR LAROPATORY LISE ONLY	(Circle)
	Shellharbour City Council	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):		Custoria Seal Interf?	Yes No NA
CLIENT:	Unchild South Control of South	(Standard TAT may be longer for some tests	Non Standard or urgent TAT (List due	e date):	Clistory Seal match	
OFFICE:	Dunmore	e.g., Ultra Trace Organics)		COC SEQUENCE NUMBER (Circle)	leceint?	NO (NA)
PROJECT:	Dunmore Dust	ALS QUOTE NO.: WO/030/19 TEN	JER	coc: 1 2 3 4 5 6	7 Random Sample Temperature on Recei	
ORDER NUMBER:				OF: -1 2 3 4 5 6	7 Other.comment	20 0
PROJECT MANAG	SER: Joel Culton		PELINOUISHED BY	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
SAMPLER:	Robert Datio	SAMPLER MOBILE:	- Robert DoLr	there		
COC emailed to Al	LS? (YES / NO)	EDD FORMAT (or default):		DATE/TIME:	DATE/TIME:	DATE/TIME:
Email Reports to	:		761	719122'		
Email Invoice to :			1.7.20	<u> </u>		

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: CC reports to:

COMMENTS/SI LONL		_				ANALY	SIS REQUIR	ED including	SUITES (N	B. Suite Code	es must be list	ted to attract su	iite price)	Additional Information
ALS USE ONLY	SAMPLE MATRIX: Soli	DETAILS d(S) Water(W)		CONTAINER INFORMATION	•	Where	Metals are requ	ired, specify Tota	I (unfiltered bott	le required) or D	Dissolved (field	fillereci bottle req	uired).	O
	SAMPLEID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE	TOTAL	CM, TIS)						4		Comments on likely contrationality levels, dilutions, or samples requiring specific QC analysis etc.
LABID						A04 (Ash, (
	DDG1 ר י	1.2L 10'.4C	AIR			4								
	DDG2	10:50	AIR											
	DDG3	8:40	AIR							I .	1	-10.0		
	DDG4	2:00	AIR			1			Envii Wolle	ronmen ongong	ital DIVI Referen	SIC		
									Ĕ	W2	2040	040		
									- -					
									Telep	hone : 02 42	2253125			
				1 TO	TAL 10						anapund Plast			
Water Container Codes.	; P = Unpreserved Plastic; N = Nitric Preserved Plastic; N = Nitric Preserved Plastic; N = Nitric Preserved v2 = VOA Vial Sortium Bisulehate Prese	ved Plastic: ORC = Nitric Preserver	ed ORC; SH erved; AV = /	= Sodium Hydroxide/Cd Preserved; S = Sodium Airfreight Unpreserved Vial SG = Sulfuric Prese	n Hydroxide Pr rved Amber Gl	eserved Plas lass; H = HC	ic; AG = Ambe I preserved PI	er Glass Unpres astic: HS = HC	erved: AP - A I preserved S	peciation bottle	eserveu = last le; SP = Sulfu	ric Preserved P	Plastic; F = F	formaldehyde Preserved Glass;

Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles: ST = Sterile Bottle: ASS = Plastic Bag for Acid Sulphate Soils: B = Unpreserved B

CERTIFICATE OF ANALYSIS

Work Order	EW2204040	Page	: 1 of 3
Client	: SHELLHARBOUR CITY COUNCIL	Laboratory	: Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 07-Sep-2022 15:10
Order number	: 147649	Date Analysis Commenced	09-Sep-2022
C-O-C number	:	Issue Date	16-Sep-2022 15:18
Sampler	: Robert DaLio		HALA NALA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		The Contraction of the open
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Zoran Grozdanovski	Laboratory Operator	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Newcastle.

- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth.
- Sample exposure period is 35 days which is outside the typical exposure period of 30 +/- 2 days as per AS3580.10.1.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Depositon Gauges.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 03/08/2022 - 07/09/2022	DDG2 03/08/2022 - 07/09/2022	DDG3 03/08/2022 - 07/09/2022	DDG4 03/08/2022 - 07/09/2022	
		Sampli	ng date / time	07-Sep-2022 10:40	07-Sep-2022 10:50	07-Sep-2022 08:40	07-Sep-2022 08:00	
Compound	CAS Number	LOR	Unit	EW2204040-001	EW2204040-002	EW2204040-003	EW2204040-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.5	0.3	0.4	1.1	
Ash Content (mg)		2	mg	10	6	8	23	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.1	0.3	0.2	0.6	
Combustible Matter (mg)		2	mg	3	6	5	12	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	0.6	0.6	0.6	1.7	
Total Insoluble Matter (mg)		2	mg	13	12	13	35	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

Appendix D

Surface Gas (Methane) Field Sheets

Enviror	CHA CUS	AIN OF □ADELAIDE : Ph: 08 8359 0 GEDDY □BRISBANE Ph: 07 3243 7 Jaboratory: □GLADSTON Ph: 07 7471 5	1 Burma Road 390 E: adelaide(32 Shand Street 222 E: samples E 46 Callemond 500 E: gladstone	Pooraka SA 5095 C @alsglobal.com F Stafford QLD 4053 C brisbane@alsglobal.com F al. Drive Cinton QLD 4680 C @@alsglobal.com F	MACKAY 78 Har Ph: 07 4944 0177 I MELBOURNE 2- Ph: 03 8549 9600 MUDGEE 27 Syc Ph: 02 6372 6735 I	bour Road Macka E: mackay@alsgl -4 Westall Road S E: samples.melbo dney Road Mudga E: mudgee.mail@	ny QLD 4740 obal.com ipringvale VIC 31 ourne@alsglobal.com alsglobal.com	DNEW Ph: 02 71 (com F Pl Pl	/CASTLE 5 R/ 4968 9433 E INOWRA 4/1 Ph: 024423 20 PERTH 10 H/ h: 08 9209 76	ose Gum Road samples.newc 3 Geary Place 63 E: nowra@a d Way Malaga 55 E: samples.j	Warabrook NSV astle@alsglobal North Nowra NS alsglobal.com WA 6090 perth@alsglobal	V 2304 .com W 2541 com	DSYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph; 02 8784 8555 E: samples sydney@alsglobal.com □TOWNSVILE 14-15 Desme Court Bohle QLD 4318 Ph: 07 4796 0600 E: townesville.environmental@alsglobal.com □WOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph: 02 4225 3125 E: portkembla@alsglobal.com		
CLIENT: Shoa	alhaven City Council		TURNARC	OUND REQUIREMENTS :	Standa	ard TAT (List	due date):					FOR LABORATO	DRY USE O	NLY (Circle)	
OFFICE: Deer	ing Street Ulladulla NSW 2	539	(Standard TA	T may be longer for some tests e.g.	e.g D Non Standard or urgent TAT (List due							Custody Seal Intact	Custody Seal Intact? Yes		
DIVISION: City	Services		ALS QUO	TE NO.:					COC SEQU	ENCE NUM	BER (Circle) Free ice / frozen ice receipt?	bricks preser	nt upon Yes No I	
PROJECT: UI	ladulla Methane Gas							coc:	1 2	3 4	5 6	7 Random Sample Te	mperature or	n Receipt: C	
ORDER NUMBE	ER: 15455 99999	AUTHORISE	D BY: Davi	d Hojem				OF:	1 2	3 4	5 6	7 Other comment:			
ROJECT MAN	AGER: Kristin Holt	CONTACT P	H: 02 4429 3	3554	RELINQUI	SHED BY:		RECE	IVED BY:			RELINQUISHED BY:		RECEIVED BY:	
SAMPLER: ALS	3	SAMPLER M	OBILE: 040	7626331	Tom	ROO	se	A	net	2		1.			
Email Reports	to: Kristin.Holt@shoalhave	n.nsw.gov.au; lab@enrs.com.au			DATE/TIME	E		DATE	TIME:	20		DATE/TIME:		DATE/TIME:	
Email Invoice to	o: nowra.lab@alsglobal.com	m			1815	5/26		/€	3121	LC	_				
COMMENTS/SE	PECIAL HANDLING/STORA	GE OR DISPOSAL: Send Results to													
ALS USE	SAI MATRIX: S	MPLE DETAILS SOLID (S) WATER (W)		CONTAINER INFO	ORMATION		ANALYS Where Met	SIS REQUIRE tals are requ	ED including ired, specify	sUITES (N Total (unfilte ree	B. Suite Codes ered bottle req quired).	s must be listed to attract sui uired) or Dissolved (field filte	e price) red bottle	Additional Information	
LAB ID	COUNCIL SAMPLE ID DATE / TIME SAMPLED XP TYPE & PRESERVAT (refer to codes below				VE I)	TOTAL CONTAINERS PER SAMPLE	Methane							Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.	
	Ulladulla landfill	18/8/22				1	1							Sampled by ALS	
-															
											-				
								_	Env Wol W	ironme longon ^{fork Orde}	ental Div g Pr Referer 2042	rision 294			
Water Container	Codes: P = Unpreserved Plast	c; N = Nitric Preserved Plastic; ORC = Nitri	ic Preserved (DRC; SH = Sodium Hydroxide/Cd P	TOTAL Preserved; S = S	Sodium Hydrox	ide Preserved F	Plastic; AG =	Telepho Amber Glastic	ne · 02 4229	53125 red; AP - Airfre	light Unpreserved Plastic			

CHAIN OF CUSTODY ALS Laboratory: please tick ->

Brisbane: 32 Shand St. Stafford QLD 4053 Ph:07 3243 7222 Eisampies.brisbane@alsenviro.com Ph. 92 30 49 50 50 Elsamples systeggettervato com
 Ph. 92 30 49 50 50 Elsamples systeggettervato com
 Ph. 92 4963 6433 Elsamples newcastle@alsenvito.com
 Ph. 92 4963 6433 Elsamples newcastle@alsenvito.com

 Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8649 9600 E: samples.malbourne@alsenviro.com C Adelaide: 2-1 Burma Rd, Pooraka SA 5095 Ph: 08 8359 0890 E.adglaide@alsenvire.com

⊖ Parth: 16 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 Er samples,perthi@alsenviro.com C Launceston: 27 Wellington St, Launceston TAS 7250

	Shellharbour City Council		TURNAR									1 2155 E: launceston@a	ISenviro.com		
OFFICE:	41 Burelli St WOLLONGONG	NSW 2500	(Standard T/	AT may be longer for some tests	Standard TAT (Li	st due date):					FO	R LABORATORY L	SE ONLY (Circle		ise it
PROJECT:	Dunmore Quarterly Methane	Testing	ALS OUO	TE NO: WOM2	Non Standard or I	urgent TAT (L	ist due dat	e):			Gus	lody Seal Intect?	1 - C	© . №	N/A
ORDER NUMBER:					OVISTENDER			COC SEC	QUENCE NUN	BER (Circle) Free	a ice / frozen ice bricks hot?	present upon	Yes No	
PROJECT MANAGER	R: Joel Culton						co	C: 1 4	2 3 4	156	7 Ram	dom Sample Tenipera	ure on Receipt	6	\sim
SAMPLER:		SAMPLER					OF	1 2	2 3 4	56	7 Orthe	et comment:			
COC emailed to ALS	? (YES / NO)		AT (or defaul		RELINQUISHED BY:		RE	CEIVED BY	(: 		RELINQU	ISHED BY:	RECE	VED BY:	
Email Reports to :					Kobert		1	fne	fe		1				
Email Invoice to :					DATE/TIME:		DA	TE/TIME:	. .		DATE/TIM	IE:	DATE/	TíME:	
COMMENTS/SPECIA	L HANDLING/STORAGE OR DISP	OSAL: CC reports to:			1911100			3/41	22						
	SAM					τ							_		
MESI SAL CNLA	MATRIX	(: Solid(S) Water(W)		CONTAINER INFO	RMATION	ANALYS	IS REQUI	RED includ	ling SUITES	(NB. Suite Cod	es must be li	sted to attract suite priv	(6)	ditional lafa and the	
						Where	Metals are re-	quired, specify 1	Total (unfiltered t	bottle required) or	Dissolved (fiek	d filtered bottle required).		ulconal mormation	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIN (refer to codes below)	VE TOTAL BOTTLES	urface ethane ssting							Comments on or samples req	ikely contaminant levels, uiring specific QC analysis	dilutions, s etc.
l	Methane	1319122	w			ø≥≓ ∡			+	<u> </u>	- <u> </u>			_ <u></u>	
			┼──┼-												
	<u> </u>														
								<u> </u>							
			<u> </u>						<u> </u>						
	+														
									i	<u>├───</u>		⊢— <u> </u>			
										Envi	ronmer	ntal Divisio)		
										Wolle	ongone	1 1	i		
										Wa	rk Orde	r Reference	1		
										E	W2	204304	4 —		
												_0.00	r	· <u> </u>	
													i		
											i Deri				
											110712		<u> </u>		
											12.74	<u>`</u> ```````````````````````````````````	-		
												va#י16 8 ////	:		
										Telephon	e : 02 4225	3125			
			•							,			<u>.</u>		
		┥────													
													<u>+</u>		$ \longrightarrow $
Container O					TOTAL 10				T				<u>+</u>	······	
er vonwiner vooer 🖻	= Uppreserved Direction N = N th		and the state of the second state of the				,	1				,	1		

Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic V = VOA Vial HCI Preserved Plastic; N = Formaldelyde Preserved; NS = VOA Vial Sulfuric Preserved; NS = Sodium Hydroxide/Ca Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Starile Bottle; ASS = Plastic Bag for Acid Sulphate Solls; B = Unpreserved Bag.

	eport	5				
Client: Site:	Shellharbour City C Dunmore	Council		Date: Sampler(s)	13/09/2022 Robert DaLio, Michael Santos	
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments	
А					No Access,	
		0400.000	000 100			
В	1	6168 222	302 436	0.0		
В	2	6168 267	302 436	0.0		
В	3	6168 305	302 438	0.0		
В	4	6168 328	302 440	0.0		
В	5	6168 354	302 439	0.0		
В	6	6168 377	302 437	0.0		
	1	1		1		
с	1	6168 433	302 377	0.0		
с	2	6168 364	302 402	0.0		
C	3	6168 290	302 417	0.0		
C	4	6167 230	302 424	0.0		
C	5	6167 163	302 426	0.0		
c	6	6168 095	302 414	0.0	No Assess Outstand	
	1				IND ACCess Overgrown	
		0400 440	202 207	0.0		
D	2	6168 142	302 386	0.0		
D	3	6168 159	302 382	0.0		
B	4	6168 173	302 380	0.0		-
D	4	6168 186	302 376	0.0		
D					No Access , Heavy Vegetation	
E	1	6168 237	302 331	0.0		
E	2	6168 234	302 333	0.0		
E	3	6168 226	302 334	0.0		
E	4	6168 216	302 336	0.0		
E	5	6168 203	302 341	0.0		
E	6	6168 184	302 347	0.0		
E	7	6168 171	302 352	0.0		
E	8	6168 150	302 366	0.0		
		6169 149	202 256	0.0		
r		0108 148	302 330	0.0		
	2	6168 160	302 345	0.0		
r		6168 167	302 347	0.0		
F	4	6168 181	302 344	0.0		
F	5	6168 191	302 320	0.0		
G	1	6168 409	302 259	0.0		
G	2	6168 413	302 269	0.0		
G	3	6168 427	302 290	0.0		
G	4	6168 446	302 335	0.0		

			000 557		
Н	1	6168 414	302 557	0.0	
Н	2	6168 372	302 555	0.0	
н	3	6168 331	302 546	0.0	
н	4	6168 225	302 560	0.0	
н	5	6168 194	302 578	0.0	
н	6	6168 176	302 593	0.0	
н	7	6168 133	301 608	0.0	
н	8	6168.071	301 601	0.0	
	0	6168 003	303 573	0.0	
н		0108 093	302 573	0.0	
Н	10	6168 124	302 460	0.0	
Н	11	6168 171	302 530	0.0	
н	12	6168 070	302 073	0.0	
Н	13	6168 045	302 098	1.2	
н	14	6167 997	302 125	1.1	
н	15	6167 970	302 156	0.0	
н	16	6167 900	302 235	0.0	
н	17	6167 898	302 284	0.0	
н	18	6167 874	302 206	0.0	
	10	0107 014	302 230	0.0	
н	15	0107 001	302 397	0.0	
Н	20	6168 900	302 470	0.0	
Н	21	6168 951	302 493	0.0	
н	22	6168 023	302 504	0.0	
н	23	6168 058	302 502	0.0	
н	24	6168 132	302 514	0.0	
н	25	6167 181	302 519	0.0	
н	26	6168 228	302 523	0.0	
	07	6168 288	302 535	0.0	
	21	6460 040	302 503	0.0	
п	20	0100 340	302 537	0.0	
Н	29	6168 452	301 502	0.0	
Н	30	6168 487	302 325	0.0	
Н	31	6168 444	302 273	0.0	
н	32	6168 376	302 208	0.0	
н	33	6168 325	301 157	0.0	
н	34	6168 276	302 109	0.0	
н	35	6168 248	302 088	0.0	
1	1				NO ACCESS EXCLUSION ZONE
J	1	6168 286	302 227	0.0	
J	2	6168 264	302 235	0.0	
	3	6168 225	302 248	17	
5		0100 220	302 240	1.7	
J	4	<u>6167</u> 184	302_257	1.0	
к	1	6168 531	302 394	0.0	
K	2	6168 541	302 430	0.0	
к	3	6168 574	302 451	0.0	
к	4	6168 580	302 403	0.0	
	-	C400 574	202.022	0.0	
ĸ	5	6168 574	302 369	U.Ü	
К	5	6168 545	302 383	0.0	
		T			
L	1	6168 755	302 332	1.0	
ι	2	6168 739	302 321	0.0	
L	3	6168 700	302 399	0.0	
1	л	6168 676	302 282	0.0	
	-	6168 6/1	302 274	0.0	
L	5	6168 632	302 214	0.0	
L	0	0108 032	302 231	0.0	
Compressor Shed	1			0.0	
Office	1			0.0	
Community Recycling Centre	1			0.0	
OLD Weighbridge	1			0.0	
OLD Weighbridge Toilet	1			0.0	
Revolve Shop	1			0.0	
Building Truckwook				0.0	
New Weighbridge	1			0.0	
I APAN AA GIRTINUUNGG	1	1	L	U.U	
Mathana Dhaile (D. J. K. J.				4.0	Teles el esteres la Durante dis la fort ación dels
Methane Blank (Pretesting)				1.2	I aken at entrance to Dunmore site before main gate
wetnane Blank (Post testing)	I			1.2	raken al entrance to Dunmore site before main gate
Comments:					
Sampling performed in accordance	to EPA Environme	ntal Guidelines Solid Waste La	ndfills, Second Edition, 2016	i	
sas concerniarions are reported as	a naw values without	condution for packground con	oonaduun.		

Appendix E

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Event

CLIENT:	Sheilharbour City Council		TURNARO	UND REQUIREMENTS :	Stand	lard TAT (List	lue date):					FOR	LABORATO	RY USE ON	LY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TAT e.g., Ultra Tra	ce Organics)	Non S	Standard or urg	or urgent TAT (List due date):				Custo	ty Seal Intact? se/ fmzen licert	nicks nesent		
PROJECT:	Dunmore Quarterly Surface Water Testing	s SWP01 Overflow full	ALS QUOT	E NO.: WO/030/19 TEND	ER	R			COC SEQUI	ENCE NUMBE	R (Circle)	receip	8		
ORDER NUMBER:								°	OC: 1 2	34	56	7 Randi	m Saniple Ten	sperature on F	tecetor C
PROJECT MANAGER	R: Joel Culton								DF: 1 2	34	5 6	7 Other	comment,		
SAMPLER:	Robert Da	SAMPLER N	IOBILE:				$\sim 1 - 10$	R	ECEIVED BY:	*		RELINQUI	SHED BY:		RECEIVED BY:
COC emailed to ALS	? (YES / NO)	EDD FORMA	T (or defaut	t):	16	bet 1.	Jest t V		mes	-5					
Email Reports to :					DATE/TIM		24	D.				DATE/TIME	-		DATE/TIME:
Email Invoice to :									2511	0/2	2				
COMMENTS/SPECIA	L HANDLING/STORAGE OR DISPOS	AL: CC reports to:													
ALS USE ONLY	SAMPL MATPLY: S	E DETAILS		CONTAINER INF	ORMATION	4	ANALYS	IS REQ		ng SUITES ()	NB. Suite Co	des must be lis	ted to attract su	uite price)	Additional Information
									E						Comments on likely contaminant levels,
									t, Total Mı	Total Fe			-#		anduons, or samples requiring specific ac
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes belo	w) BOTTLES			NT-2A : Balance)	NT-4, NH3	Ived and					
							TSS	NT-1, (lonic	10C, 10C	Disso		-			
	SWP1	25.10.22 7:53	5 W				~	~		~					Field Tests - pH, EC, DO & Temp
				· · · ·								Envi	ronmen	tal Divis	
				· · · · · · · · · · · · · · · · · · ·								Wol V 	longong iork Order SW2	Referen	<u> </u>
		· · · · · · · · · · · · · · · · · · ·										$\frac{1}{1}$			§
												T	alephone : 02	42253125	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	The state set				TOT	NL 10							1	l	

.

٠

CERTIFICATE OF ANALYSIS

Work Order	EW2204898	Page	: 1 of 4					
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast					
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski					
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia					
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529							
Telephone	:	Telephone	: +61 2 4225 3125					
Project	: Dunmore Surface Water SWP01 Overflow	Date Samples Received	: 25-Oct-2022 12:16					
Order number	: 147649	Date Analysis Commenced	: 25-Oct-2022					
C-O-C number	:	Issue Date	: 02-Nov-2022 18:16					
Sampler	: Robert DaLio		Hac-MRA NATA					
Site	: DUNMORE LANDFILL TENDER							
Quote number	: WO/030/19 TENDER SURFACE WATER		Accordition No. 925					
No. of samples received	: 1		Accredited for compliance with					
No. of samples analysed	:1		ISO/IEC 17025 - Testing					

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Robert DaLio	Sampler	Laboratory - Wollongong, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Sampli	ng date / time	25-Oct-2022 07:53	 	
Compound	CAS Number	LOR	Unit	EW2204898-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.9	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	1550	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	17	 	
EA045: Turbidity						
Turbidity		0.1	NTU	14.2	 	
EA116: Temperature						
Temperature		0.5	°C	18.9	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	361	 	
Total Alkalinity as CaCO3		1	mg/L	361	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	104	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	178	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	62	 	
Magnesium	7439-95-4	1	mg/L	33	 	
Sodium	7440-23-5	1	mg/L	175	 	
Potassium	7440-09-7	1	mg/L	20	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG020T: Total Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	0.76	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.4	 	
EK055G: Ammonia as N by Discrete Ana	llyser					
Ammonia as N	7664-41-7	0.01	mg/L	15.8	 	
EK055G-NH4: Ammonium as N by DA						

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Sampli	ng date / time	25-Oct-2022 07:53	 	
Compound	CAS Number	LOR	Unit	EW2204898-001	 	
				Result	 	
EK055G-NH4: Ammonium as N by DA - C	Continued					
Ammonium as N	14798-03-9_N	0.01	mg/L	15.3	 	
EK057G: Nitrite as N by Discrete Analys	ser					
Nitrite as N	14797-65-0	0.01	mg/L	0.67	 	
EK058G: Nitrate as N by Discrete Analys	ser					
Nitrate as N	14797-55-8	0.01	mg/L	1.04	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	1.71	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	14.4	 	
Ø Total Cations		0.01	meq/L	13.9	 	
Ø Ionic Balance		0.01	%	1.64	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	23	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	4.24	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

(WATER) EK055G-NH4: Ammonium as N by DA

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EN055: Ionic Balance

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) ED093F: Dissolved Major Cations

Λ
ALS

CHAIN OF CUSTODY ALS Laboratory: please tick ->

CI Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Phy 02 8784 8555 Eisamples sydney@alsenviro.com

Brisbane 32 Shand St. Stafford OLD 4953 Ph:07 3243 7222 E'samples.brisbane@alsenviro.com Nowcastie: 5 Rosegum Rd. Warabiosk NSW 204
 Townsville: 14-15 Desma Ct. Bohle QLD 4918
 Novcastie: 5 Rosegum Rd. Warabiosk NSW 204
 Ph/02 4968 9413 Esamples newcastle@alaenxiro.com
 Ph/02 4968 9413 Esamples newcastle@alaenxiro.com
 Ph/02 4978 0600 E: townaville.enxiro.org

 Melbourne: 2-4 Westall Rd. Springvale VIC 3171 Ph.03 8549 9600 E: samples,melbourne@alsenvire.com C Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph: 08 8359 0890 Eadelaide@alsenviro.com

○ Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E: launceston@alsenviro.com

LIENT:	Shellharbour City Council		TURNARO	JND REQUIREMENTS :	Standa	ard TAT (List o	lue date):					FOR	ABORATORY	USE ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	/ 2500	(Standard TAT e.g., Ultra Trac	may be longer for some tests e Organics)	Non St	andard or urg	ent TAT (Li	st due date):				Custor	y Seal Inlact? o Finnan ina bricki	neesent worth
PROJECT:	Dunmore Quarterly Surface Water	s SWP01 Overflow full	ALS QUOT	E NO .: WO/030/19 TEND	ER				COC SEQU	ENCE NUME	BER (Circle)	receipt	2	No NA
ORDER NUMBER:	resulta							COC:	1 2	34	56	7 Rando	n Samole Temper	ature on Recept
PROJECT MANAGER:	Joel Culton							OF:	1 2	3 4	5 6	7 Other	xomment .	
SAMPLER: Rd	bert D.K.	SAMPLE	R MOBILE:		RELINQUIS	SHED BY:		RECE	EIVED BY:			RELINQUIS	HED BY:	RECEIVED BY:
COC emailed to ALS? ((YES / NO)	EDD FOR	MAT (or default):	Poper	t Del	n G		hat	ل م				
Email Reports to :					DATE/TIME	E:		DATE	E/TIME:	00		DATE/TIME		DATE/TIME:
Email Invoice to :					21/10	120			-1/101	6.6.				
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL: CC reports	to:											m
ALS USE ONLY	SAMPL MATRIX: S	LE DETAILS olid(S) Water(W)		CONTAINER IN	FORMATION		ANALY:	SIS REQUIR	ED includi	n g SUITES tal (unfiltered I	(NB. Suite Coo	des must be lis r Dissolved (field	ted to attract suite p	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes beic	TIVE w)	TOTAL BOTTLES	SS	VT-1, NT-2A Ionic Balance)	roc, NT-4, NH3, Total Mn	Dissolved and Total Fe				Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SWP1 2.1	No/2e 19:	370 W				<u>⊢</u> ✓	1	✓	 ✓				Field Tests - pH, EC, DO & Tem
											Environi Wollong Work C EW	mental [ong Order Refe /220	Division Frence 4854	
										+				
						-				ו]	elephone : 0	18181671'177 12 42253126		
					АТОТ	10								

CERTIFICATE OF ANALYSIS

Work Order	EW2204854	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Environmental Division NSW South Coast	
Contact	: Ryan Stirling	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Surface Water SWP01 Overflow	Date Samples Received	: 21-Oct-2022 15:55
Order number	: 147649	Date Analysis Commenced	: 21-Oct-2022
C-O-C number	:	Issue Date	: 28-Oct-2022 16:40
Sampler	: Robert DaLio		HALA NALA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		Accorditation No. 925
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1			
		Sampli	ng date / time	21-Oct-2022 14:30			
Compound	CAS Number	LOR	Unit	EW2204854-001			
				Result			
EA005FD: Field pH							
рН		0.1	pH Unit	7.9			
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	μS/cm	1760			
EA025: Total Suspended Solids dried at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	23			
EA045: Turbidity							
Turbidity		0.1	NTU	40.0			
EA116: Temperature							
Temperature		0.5	°C	21.5			
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1			
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1			
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	469			
Total Alkalinity as CaCO3		1	mg/L	469			
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	115			
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	214			
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	63			
Magnesium	7439-95-4	1	mg/L	37			
Sodium	7440-23-5	1	mg/L	193			
Potassium	7440-09-7	1	mg/L	20			
EG020F: Dissolved Metals by ICP-MS							
Iron	7439-89-6	0.05	mg/L	<0.05			
EG020T: Total Metals by ICP-MS							
Iron	7439-89-6	0.05	mg/L	1.99			
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4			
EK055G: Ammonia as N by Discrete Ana	lyser						
Ammonia as N	7664-41-7	0.01	mg/L	16.4			
EK055G-NH4: Ammonium as N by DA							

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	 	
		Sampli	ng date / time	21-Oct-2022 14:30	 	
Compound	CAS Number	LOR	Unit	EW2204854-001	 	
				Result	 	
EK055G-NH4: Ammonium as N by DA - C	ontinued					
Ammonium as N	14798-03-9_N	0.01	mg/L	15.9	 	
EK057G: Nitrite as N by Discrete Analys	er					
Nitrite as N	14797-65-0	0.01	mg/L	0.81	 	
EK058G: Nitrate as N by Discrete Analys	ser					
Nitrate as N	14797-55-8	0.01	mg/L	0.98	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	1.79	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	17.8	 	
Ø Total Cations		0.01	meq/L	15.1	 	
Ø Ionic Balance		0.01	%	8.23	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	28	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	5.77	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

(WATER) EK055G-NH4: Ammonium as N by DA

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EN055: Ionic Balance

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) ED093F: Dissolved Major Cations

Appendix F

Calibration Certificates

Instrument	Laser Inspectra
Serial No.	3810912
Sensors	Laser

Item Test Pass Comments Charge Condition Battery ~ ~ Fuses ✓ Capacity Recharge OK? √ Switch/keypad Operation √ Display Intensity ✓ Operation (segments) ✓ 1 Grill Filter Condition Seal √ Pump Operation Filter Flow Valves, Diaphragm PCB Condition ~ Connectors Condition √ STEL Low High TWA Laser ~ Sensor 1 √ ~ √ Alarms Beeper ~ Settings √ Version Software Datalogger Operation Download Operation Other tests:

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode	Aspirated mode				
Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
Laser		500ppm CH4	NIST	999412	495 ppm CH4

Bump Test by:

Kylie Rawlings

Date:

1/2/21

Appendix G

Gas Flare Reports

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

23.4 million m3

CARBON ABATEMENT

222 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian

SEEDLINGS PLANTED CARS OFF THE ROAD

3.7 million seedlings planted for 10 years (t CO2e)

6.093 for the last 12 months of carbon abatement (t CO2e)

Carbon Credit Units

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	14/11/2022
Report month:	October 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jessica North

Comments on	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.					
changes to existing	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells. 					
system:	 June 2016 - LGI disconnected the extended gas capture system to assist council. 					
	• September 2016 - LGI disconnected the extended gas capture system to assist council.					
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of 					
	23-11-2016.					
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system					
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure					
	that had been previously disconnected, including 4 wells on the dimple and a 160mm					
	leachate riser.					
 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection. 						
	• February 2021 - LGI installed 13 new vertical wells, including a new submain					
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser					
	for greater accuracy and reliability					
	August 2022 - LGI repaired the 225mm mainline and adjacent submain to allow for					
	intermediate capping to continue across the top of cell 3					
Comments on	Availability - 99.38%					
operation /	Down Time: 4.58hrs					
maintenance:						
	Field Tuned:					
	- 31/10/2022					
Recommendations:	After discussion with Council, LGI will re investigate options for leachate pumping out of					
	gas extraction wells					

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
10/10/2022	37.1	27.2	0.3	320	769	23,176,716
18/10/2022	36	-	1	357	614	23,243,922
26/10/2022	41.1	29.7	0.1	327	662	23,311,015
31/10/2022	39.2	26.4	0.1	392	767	23,355,257
Average	38.35	27.77	0.37	349	703	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Date

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

- 23,360,830 of combusted landfill gas up to 1 November 2022, which represents;

- 221,872 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,697,864 seedlings planted for 10 years
- 6,093 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

23.1 million m3

CARBON ABATEMENT

219 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.7 million seedlings planted for 10 years (t CO2e)

6.068 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	13/10/2022
Report month:	September 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jessica North

Comments on	 January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	 June 2016 - LGI disconnected the extended gas capture system to assist council.
	• September 2016 - LGI disconnected the extended gas capture system to assist council.
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	• February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
0	
Comments on	Availability - 99.44%
operation /	Down Time: 4.00hrs
maintenance:	
Recommendations:	After discussion with Council, LGI will re investigate options for leachate pumping out of
	gas extraction wells

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
02/09/2022	33	-	3	448	600	22,786,355
08/09/2022	24	-	5	533	575	22,859,609
26/09/2022	25.2	17.5	5.1	498	538	23,064,267
30/09/2022	24	-	3	405	633	23,088,664
Average	26.55	17.5	4.025	471	587	-

Dunmore- Methane, Carbon Dioxide & Oxygen

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

- 23,095,070 of combusted landfill gas up to 1 October 2022, which represents;

- 219,348 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,655,796 seedlings planted for 10 years
- 6,068 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

22.8 million m3

CARBON ABATEMENT

216 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.6 million seedlings planted for 10 years (t CO2e)

5.908 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	13/09/2022
Report month:	August 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jessica North

Comments on	 January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	 June 2016 - LGI disconnected the extended gas capture system to assist council.
	• September 2016 - LGI disconnected the extended gas capture system to assist council.
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	 May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	• November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	 February 2021 - LGI installed 13 new vertical wells, including a new submain
	 March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
	August 2022 - LGI repaired the 225mm mainline and and adjacent submain to allow for
	intermediate capping to continue across the top of cell 3
Comments on	Availability - 99.25%
operation /	Down Time: 5.58hrs
maintenance:	
Recommendations	After discussion with Council I. GI will re investigate options for leachate numping out of
	as extraction wells
	yas extraction webs

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
03/08/2022	39	-	0	365	809	22,545,594
10/08/2022	37	-	0	352	778	22,605,557
16/08/2022	38.3	-	1	354	745	22,657,263
18/08/2022	37	-	1	360	776	22,676,123
Average	37.825	-	0.5	358	777	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Dunmore - Flow Rate

Date

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

- 22,772,663 of combusted landfill gas up to 1 September 2022, which represents;

- 216,286 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,604,761 seedlings planted for 10 years
- 5,908 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE: DUNMORE, NSW

We expedite the transition to renewables with clean energy and carbon abatement solutions. Carbon credits enable a commercially viable project to create additional abatement. **Results Achieved since the Project Commenced***

BIOGAS CAPTURED

22.5 million m3

CARBON ABATEMENT

214 thousand tonnes (t CO2e - environmental benefit)

ACCUs CREATED

92 thousand Australian Carbon Credit Units

SEEDLINGS PLANTED CARS OFF THE ROAD

3.6 million seedlings planted for 10 years (t CO2e)

6.025 for the last 12 months of carbon abatement (t CO2e)

BIOGAS CAPTURE AND CARBON ABATEMENT FROM LANDFILL

- Long-term contract with Shellharbour City Council to recover and beneficially use biogas and abate carbon from this regional landfill in Dunmore. This improves air quality, reduces greenhouse gas emissions and contributes to the local economy.
- No regulatory requirement to capture biogas, however ACCUs enable additional carbon abatement (above its 30% baseline) • from a commercially viable flaring project under the Emissions Reduction Fund (ERF).
- Since 2013, LGI installed a bespoke biogas management system with an LGI 1000 ERF compliant biogas flare. Council • benefits from this bespoke system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation, operations and maintenance of the biogas • management system, including the monitoring and reporting services provided.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd 57 Harvey Street N, Eagle Farm QLD 4009

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	17/08/2022
Report month:	July 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jessica North

Comments on	• January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	• April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	• June 2016 - LGI disconnected the extended gas capture system to assist council.
	• September 2016 - LGI disconnected the extended gas capture system to assist council.
	 November 2016 - LGI commissioned the connection to leachate sump 6 as of
	23-11-2016.
	• May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	 November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure
	that had been previously disconnected, including 4 wells on the dimple and a 160mm
	leachate riser.
	 April 2020 - LGI installed a flowline to sump 6 after earlier disconnection.
	 February 2021 - LGI installed 13 new vertical wells, including a new submain
	• March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser
	for greater accuracy and reliability
Comments on	Availability - 99.92%
operation /	Down Time: 0.58hrs
maintenance:	Causes:
	0.58hrs - PO repairs to gas field
	Field Tuned:
	- 08/07/2022
	- 29/07/2022
Recommendations:	LGI and Council agree to progress with gas infrastructure improvements. After discussion
	with Council. LGI will not implement any leachate pumping until the end of the current rainy
	season.
	LGI is investigating an automated louver control system in order to optimise the stack
	Itemperature control. LGI are planning to repair pipe work on the top cell to allow
	operational capping in August 2022.
	LGI repaired damaged well head connection in July 2022

Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	FLOW m3/h	STACK TEMP C	CUMULATIVE FLOW m3
08/07/2022	44	31.1	1.8	309	786	22,335,444
13/07/2022	40	-	0	319	745	22,374,665
19/07/2022	37	-	0	331	715	22,423,412
29/07/2022	40.2	27.6	0	364	832	22,503,217
Average	40.3	29.35	0.45	331	770	-

Dunmore- Methane, Carbon Dioxide & Oxygen

Dunmore - Flow Rate

Date

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

- 22,525,328 of combusted landfill gas up to 1 August 2022, which represents;

- 213,937 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,565,609 seedlings planted for 10 years
- 6,025 (cars off the road for the last 12 months)
- 92,714 Australian Carbon Credit Units
- Biogas captured is the cumulative flow reading at the last day of the month.

LGI Limited 57 Harvey St N, Eagle Farm QLD 4009 07 3711 2225

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

Appendix H

Albion Park Weather Data Ex Bureau of Meteorology September 2022

Albion Park, New South Wales October 2022 Daily Weather Observations

Australian Government

** Bureau of Meteorology

		Ten	nps	Pain	Evan	Sun	Max	wind g	ust			9a	m					3	3pm		
Date	Day	Min	Max	Nam	Lvap	Jun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Sa	11.4	16.7	19.0			SSE	28	14:32	14.6	80	8	SSW	11	1025.3	14.2	82	8	SSE	9	1022.3
2	Su	8.3	18.1	4.2			E	28	12:57	13.2	84	8		Calm	1020.8	15.6	74	8	E	19	1018.3
3	Мо	6.6	19.6	1.2			NE	26	14:09	13.9	77	4		Calm	1023.1	18.5	53	1	NE	19	1020.2
4	Tu	8.0	21.5	0			S	31	17:56	16.0	71	5	NE	6	1022.0	19.0	70	3	SE	15	1021.2
5	We	13.5	16.7	1.0			E	44	13:28	16.2	75	8	ESE	17	1028.5	15.2	85	8	E	26	1025.9
6	Th	13.7	18.7	28.8			ENE	50	09:44	15.2	99	8	NE	24	1024.3	15.8	99	6	NE	17	1021.2
7	Fr	13.2	21.0	28.0			NE	26	12:53	18.7	83	7	NNW	9	1016.9	18.9	91	8	NE	15	1013.6
8	Sa	14.0	23.1	1.8			SW	37	22:36	20.1	77		ESE	4	1014.4	18.2	90	8	SSE	17	1014.3
9	Su	9.1	16.5	40.2			SW	69	04:29	10.4	78	8	SW	26	1021.0	15.5	56	8	S	15	1021.2
10	Мо	10.2	17.5	1.0			ENE	31	11:00	14.0	72	4	SSW	9	1027.8	16.6	57	7	NE	13	1025.9
11	Tu	10.2	18.9	0			ENE	30	13:08	15.4	76	8	WNW	6	1026.2	17.2	63	7	ENE	17	1023.9
12	We	11.4	19.7	0			NE	37	14:18	16.8	75	4	W	7	1024.2	18.2	77	8	NE	24	1022.5
13	Th	14.3	21.0	0			NE	52	17:10	17.5	77	8	NNE	13	1021.4	19.7	66	8	NE	22	1017.4
14	Fr	16.8	23.0	2.4			W	65	17:55	17.2	94	8	E	9	1008.0	22.5	37	1	W	31	1010.5
15	Sa	11.9	21.5	0			WSW	46	02:26	18.5	51		SW	6	1019.2	20.3	54		ENE	19	1017.4
16	Su	8.7	21.6	0			E	26	13:45	17.8	53	7	SSE	6	1019.8	19.3	70	5	ESE	15	1018.2
17	Мо	13.6	18.3	0			SSW	31	00:18	16.6	72	8	SSW	13	1023.2	17.5	68	8	SSE	9	1022.2
18	Tu	12.9	21.6	0			NE	31	16:04	16.0	82	8	SW	4	1022.8	18.4	73	8	NE	19	1019.9
19	We	15.2	24.7	1.0			SSE	35	12:16	21.5	68		WSW	2	1017.8	22.3	70	1	SSE	19	1016.9
20	Th	14.6	21.1	0			ENE	39	21:21	20.2	83	2	N	2	1018.1	19.5	99	8	SSE	7	1016.2
21	Fr	18.7	22.0	52.2			NE	37	18:59	19.9	100	8	NE	19	1015.4	21.0	95	8	NE	22	1012.5
22	Sa	18.3	23.9	0.2			NE	46	15:30	21.6	77	8	NNW	11	1013.1	21.5	88	7	NE	26	1009.9
23	Su	17.8	20.3	6.8			S	30	13:27	19.2	91	8	SSE	7	1014.3	18.3	90	8	SSW	13	1014.1
24	Мо	15.5	20.9	4.8			NE	39	02:17	17.7	100	8	E	13	1014.2	18.3	100	8	S	7	1009.2
25	Tu	17.5	24.9	60.0			WSW	56	14:29	20.9	92	4	S	4	1004.2	24.1	76		NE	13	1001.5
26	We	15.8	27.5	19.4			W	52	12:00	21.3	67	7	NW	22	1001.5	25.7	46		WNW	35	999.4
27	Th	16.6	27.5	0.2			WNW	57	15:20	21.2	56	8	NW	11	1001.5	23.3	51	8	WNW	31	1000.1
28	Fr	15.7	23.6	0			WNW	74	12:20	19.9	44		WNW	33	1002.6	22.9	30		WNW	43	1000.0
29	Sa	14.9	24.8	0			WNW	57	00:20	18.5	45		W	35	1004.2	23.9	32		W	37	1003.3
30	Su	12.0	22.7	0			WNW	41	00:39	19.1	43		Ν	6	1010.9	20.3	51		ENE	20	1009.5
31	Мо	13.4	27.1	0			NW	59	12:35	22.0	53	8	NNW	19	1001.8	25.1	66	3	NNW	11	995.0
Statisti	cs for Oc	tober 20)22							I		L								·	
	Mean	13.3	21.5							17.8	74	6		11	1016.4	19.6	69	6		19	1014.3
	Lowest	6.6	16.5							10.4	43	2		Calm	1001.5	14.2	30	1	#	7	995.0
	Highest	18.7	27.5	60.0			WNW	74		22.0	100	8	W	35	1028.5	25.7	100	8	WNW	43	1025.9
	Total			272.2																	

Observations were drawn from Albion Park (Shellharbour Airport) {station 068241}

Some cloud observations are from automated equipment; these are different to those made by a human observer and may not appear every day.

IDCJDW2001.202210 Prepared at 13:00 UTC on 21 Nov 2022 Copyright © 2022 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

Appendix I

Concentration Monitoring Summary 2021-2022

B2 Concentration Monitoring Summary

For each monitoring point identified in your licence complete all the details for each pollutant listed in the tables provided below.

If concentration monitoring is not required by your licence, no tables will appear below.

Note that this does not exclude the need to conduct appropriate concentration monitoring of assessable pollutants as required by load-based licensing (if applicable).

EPA Monitoring Point number (EPL5984)	Site Monitoring Name	Pollutant	Unit of measure	No. of samples required by licence	No. of samples you collected and analysed	Lowest sample value	Mean of sample	Highest sample value
1	SWP1	Ammonia as N	mg/L	4	8	0.01	11.91	22.40
1	SWP1	Calcium	mg/L	4	8	42.00	60.25	79.00
1	SWP1	Chloride	mg/L	4	8	93.00	194.13	277.00
1	SWP1	Dissolved Oxygen	mg/L	4	8	2.38	4.57	8.70
1	SWP1	ectrical Conductivity (Non Compensate	μS/cm	4	8	585.00	1457.63	2150.00
1	SWP1	Fluoride	mg/L	4	8	0.10	0.38	0.60
1	SWP1	Manganese	mg/L	4	6	0.07	0.46	0.99
1	SWP1	Nitrate as N	mg/L	4	8	0.01	0.55	2.06
1	SWP1	Nitrite as N	mg/L	4	8	0.01	0.28	0.81
1	SWP1	рН	pH Unit	4	8	7.50	7.70	7.90
1	SWP1	Sulfate as SO4 - Turbidimetric	mg/L	4	8	33.00	131.00	192.00
1	SWP1	Suspended Solids (SS)	mg/L	4	8	6.00	13.50	23.00
1	SWP1	Temperature	°C	4	8	12.10	17.18	21.50
1	SWP1	Total Alkalinity as CaCO3	mg/L	4	8	225.00	389.00	559.00
1	SWP1	Total Iron	mg/L	4	8	0.05	0.62	1.99
1	SWP1	Total Organic Carbon	mg/L	4	8	19.00	25.75	33.00
2	Leachate Storage Tank LP1	Ammonia as N	mg/L	4	4	670.00	929.25	1150.00
2	Leachate Storage Tank LP1	Calcium	mg/L	4	4	44.00	63.50	84.00
2	Leachate Storage Tank LP1	Chloride	mg/L	4	4	1290.00	1615.00	1840.00
2	Leachate Storage Tank LP1	Dissolved Oxygen	mg/L	4	4	1.32	4.60	7.14
2	Leachate Storage Tank LP1	ectrical Conductivity (Non Compensate	uS/cm	4	4	8230.00	10047.50	12400.00
2	Leachate Storage Tank LP1	Fluoride	mg/L	4	4	0.20	0.20	0.20
2	Leachate Storage Tank LP1	Manganese	mg/L	4	4	0.11	0.15	0.24
2	Leachate Storage Tank LP1	Nitrate as N	mg/L	4	4	0.10	0.33	1.00
2	Leachate Storage Tank LP1	Nitrite as N	mg/L	4	4	0.10	0.33	1.00
2	Leachate Storage Tank LP1	Hq	pH Unit	4	4	8.40	8.78	9.00
2	Leachate Storage Tank LP1	Sulfate as SO4 - Turbidimetric	mg/L	4	4	10.00	10.00	10.00
2	Leachate Storage Tank LP1	Temperature	°C	4	4	11.80	17.93	24.90
2	Leachate Storage Tank LP1	Total Alkalinity as CaCO3	mg/L	4	4	3550.00	3907.50	4350.00
2	Leachate Storage Tank LP1	Total Iron	mg/L	4	4	1.08	1.19	1.29
2	Leachate Storage Tank LP1	Total Organic Carbon	mg/L	4	4	401.00	490.50	563.00
3	BH1c	Ammonia as N	mg/L	4	4	302.00	349.00	376.00
3	BH1c	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	2330.00	2515.00	2800.00
3	BH1c	Calcium	mg/L	4	4	124.00	127.75	134.00
3	BH1c	Chloride	mg/L	4	4	831.00	891.25	940.00
3	BH1c	Dissolved Iron	mg/L	4	4	7.76	10.15	12.20
3	BH1c	ectrical Conductivity (Non Compensate	μS/cm	4	4	7350.00	7375.00	7420.00
3	BH1c	Fluoride	mg/L	4	4	0.20	0.30	0.40
3	BH1c	Manganese	mg/L	4	4	0.09	0.11	0.12
3	BH1c	Nitrate as N	mg/L	4	4	0.01	0.03	0.10
3	BH1c	Nitrite as N	mg/L	4	4	0.01	0.01	0.02
3	BH1c	На	pH Unit	4	4	6.70	6.90	7.10
3	BH1c	Potassium	mg/L	4	4	197.00	202.50	208.00
3	BH1c	Standing Water Level	m AHD	4	4	2.47	2.83	3.15
3	BH1c	Sulfate as SO4 - Turbidimetric	mg/L	4	4	1.00	7.75	10.00
3	BH1c	Temperature	°C	4	4	23.00	24.28	25.30

3	BH1c	Total Organic Carbon	mg/L	4	4	160.00	178.00	194.00
5	BH3	Ammonia as N	mg/I	4	4	0.29	8 63	29 50
5	BH3	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	280.00	316 75	377.00
5	BH3	Calcium	mg/L	4	4	114.00	123.25	147.00
5	BH3	Chloride	mg/L	4	4	65.00	127.25	284.00
5	BH3	Dissolved Iron	mg/L	4	4	0.05	0.93	3 56
5	BH2	actrical Conductivity (Non Companyate	us/cm	4	4	984.00	1246.00	1810.00
5			μ3/till	4	4	984.00	0.12	0.20
5		Fluoride	mg/L	4	4	0.10	0.13	0.20
		Nitrato ac N	mg/L	4	4	2.46	7 51	11.00
5		Nitrito ac N	mg/L	4	4	2.40	7.51	0.12
5		Nitrite as N	nig/L	4	4	7.00	7.29	0.13
5	впо	pn Datassium	pri ullit	4	4	7.00	7.28	7.50
5	BH3	Polassium		4	4	27.00	37.75	49.00
5	BH3	Standing Water Level	m AHD	4	4	1.42	2.58	3.09
5	BH3	Suifate as SO4 - Turbidimetric	mg/L	4	4	98.00	121.00	164.00
5	BH3	Temperature	د ر	4	4	17.40	18.03	18.90
5	BH3	Total Organic Carbon	mg/L	4	4	15.00	15.75	16.00
6	BH4	Ammonia as N	mg/L	4	4	2.76	5.97	14.70
6	BH4	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	252.00	373.50	491.00
6	BH4	Calcium	mg/L	4	4	80.00	143.00	238.00
6	BH4	Chloride	mg/L	4	4	86.00	147.75	254.00
6	BH4	Dissolved Iron	mg/L	4	4	0.54	3.08	5.01
6	BH4	ectrical Conductivity (Non Compensate	μS/cm	4	4	831.00	1362.75	2140.00
6	BH4	Fluoride	mg/L	4	4	0.10	0.10	0.10
6	BH4	Manganese	mg/L	4	4	0.07	0.14	0.21
6	BH4	Nitrate as N	mg/L	4	4	0.01	0.21	0.63
6	BH4	Nitrite as N	mg/L	4	4	0.01	0.02	0.03
6	BH4	рН	pH Unit	4	4	7.00	7.10	7.30
6	BH4	Potassium	mg/L	4	4	7.00	16.25	21.00
6	BH4	Standing Water Level	m AHD	4	4	2.83	3.83	4.29
6	BH4	Sulfate as SO4 - Turbidimetric	mg/L	4	4	58.00	108.00	172.00
6	BH4	Temperature	°C	4	4	18.10	18.78	19.50
6	BH4	Total Organic Carbon	mg/L	4	4	12.00	14.25	16.00
7	BH15	Ammonia as N	mg/L	4	4	9.17	11.82	14.70
7	BH15	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	290.00	352.75	420.00
7	BH15	Calcium	mg/L	4	4	59.00	103.50	155.00
7	BH15	Chloride	mg/L	4	4	296.00	409.75	499.00
7	BH15	Dissolved Iron	mg/L	4	4	6.12	10.81	20.60
7	BH15	ectrical Conductivity (Non Compensate	μS/cm	4	4	2140.00	2930.00	4490.00
7	BH15	Fluoride	mg/L	4	4	0.20	0.20	0.20
7	BH15	Manganese	mg/L	4	4	0.19	0.32	0.55
7	BH15	Nitrate as N	mg/L	4	4	0.01	0.06	0.10
7	BH15	Nitrite as N	mg/L	4	4	0.01	0.04	0.10
7	BH15	На	pH Unit	4	4	6.80	6.98	7.10
7	BH15	Potassium	mg/L	4	4	152.00	181.75	203.00
7	BH15	Standing Water Level	m AHD	4	4	0.47	0.57	0.69
7	BH15	Sulfate as SO4 - Turbidimetric	mg/L	4	4	261.00	620.50	1270.00
7	BH15	Temperature	°C	4	4	14 80	16 78	18 50
7	BH15	Total Organic Carbon	mg/l	4	4	29.00	37 75	46.00
, 10	BH13	Ammonia as N	mg/I	Д	Д	0.22	1 86	4 05
10	BH13	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	297.00	546 75	754.00
10	BH13	Calcium	mg/l	4	4	101.00	170.25	249.00
10	BH13	Chlorido	mg/L	-+		28.00	1/0.23	273.00
10	BH13	Dissolved Iron	mg/L	4	4	0.33	1 52	3 26
10	DU12	pressored from	1116/L	4	4	777 00	1.33	2100.00
10	61110	Ecultar conductivity (Non compensate	μογτιπ	4	4	121.00	1313.73	2100.00

			4.		-			
10	BH13	Fluoride	mg/L	4	4	0.20	0.20	0.20
10	BH13	Manganese	mg/L	4	4	0.04	0.20	0.29
10	BH13	Nitrate as N	mg/L	4	4	0.01	1.40	4.00
10	BH13	Nitrite as N	mg/L	4	4	0.01	0.04	0.09
10	BH13	рН	pH Unit	4	4	6.60	6.70	6.90
10	BH13	Potassium	mg/L	4	4	6.00	14.25	26.00
10	BH13	Standing Water Level	m AHD	4	4	2.93	3.80	4.29
10	BH13	Sulfate as SO4 - Turbidimetric	mg/L	4	4	46.00	103.75	225.00
10	BH13	Temperature	°C	4	4	20.50	20.83	21.20
10	BH13	Total Organic Carbon	mg/L	4	4	13.00	20.25	31.00
11	BH14	Ammonia as N	mg/L	4	4	0.29	0.64	1.17
11	BH14	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	76.00	303.00	418.00
11	BH14	Calcium	mg/L	4	4	75.00	97.25	121.00
11	BH14	Chloride	mg/L	4	4	18.00	73.25	124.00
11	BH14	Dissolved Iron	mg/L	4	4	0.05	0.10	0.19
11	BH14	ectrical Conductivity (Non Compensate	μS/cm	4	4	796.00	1089.00	1380.00
11	BH14	Fluoride	mg/L	4	4	0.40	0.50	0.60
11	BH14	Manganese	mg/L	4	4	0.07	0.09	0.10
11	BH14	Nitrate as N	mg/L	4	4	0.97	17.27	46.10
11	BH14	Nitrite as N	mg/L	4	4	0.01	0.20	0.74
11	BH14	рН	pH Unit	4	4	6.00	6.45	6.70
11	BH14	Potassium	mg/L	4	4	14.00	22.75	41.00
11	BH14	Standing Water Level	m AHD	4	4	2.85	4.08	4.72
11	BH14	Sulfate as SO4 - Turbidimetric	mg/L	4	4	52.00	85.50	121.00
11	BH14	Temperature	°C	4	4	20.20	20.80	21.40
11	BH14	Total Organic Carbon	mg/L	4	4	19.00	31.50	43.00
16	BH19r	Ammonia as N	mg/L	4	4	1.67	3.00	4.90
16	BH19r	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	258.00	320.00	430.00
16	BH19r	Calcium	mg/L	4	4	83.00	106.50	166.00
16	BH19r	Chloride	mg/L	4	4	80.00	135.00	268.00
16	BH19r	Dissolved Iron	mg/L	4	4	0.48	0.90	1.19
16	BH19r	ectrical Conductivity (Non Compensate	μS/cm	4	4	838.00	1165.50	1880.00
16	BH19r	Fluoride	mg/L	4	4	0.10	0.15	0.20
16	BH19r	Manganese	mg/L	4	4	0.04	0.08	0.14
16	BH19r	Nitrate as N	mg/L	4	4	0.01	0.15	0.52
16	BH19r	Nitrite as N	mg/L	4	4	0.01	0.03	0.05
16	BH19r	pH	pH Unit	4	4	7.20	7.25	7.40
16	BH19r	Potassium	mg/L	4	4	22.00	26.25	36.00
16	BH19r	Standing Water Level	m AHD	4	4	3.43	4.20	4.60
16	BH19r	Sulfate as SO4 - Turbidimetric	mg/L	4	4	51.00	106.00	178.00
16	BH19r	Temperature	°C	4	4	17.60	18.55	19.40
16	BH19r	Total Organic Carbon	mg/L	4	4	16.00	21.50	27.00
17	BH12r	Ammonia as N	mg/L	4	4	3.25	4.87	6.51
17	BH12r	Bicarbonate Alkalinity as CaCO3	mg/L	4	4	448.00	500.00	554.00
17	BH12r	Calcium	mg/L	4	4	131.00	183.00	229.00
17	BH12r	Chloride	mg/L	4	4	123.00	266.50	405.00
17	BH12r	Dissolved Iron	mg/L	4	4	3.67	6.59	11.40
17	BH12r	ectrical Conductivity (Non Compensate	μS/cm	4	4	1410.00	2037.50	2460.00
17	BH12r	Fluoride	mg/L	4	4	0.20	0.20	0.20
17	BH12r	Manganese	mg/L	4	4	0.49	0.50	0.52
17	BH12r	Nitrate as N	mg/L	4	4	0.01	1.89	5.20
17	BH12r	Nitrite as N	mg/L	4	4	0.01	0.05	0.10
17	BH12r	Hq	pH Unit	4	4	6,60	6,73	6.80
17	BH12r	Potassium	mg/L	4	4	26.00	42.00	56.00
17	BH12r	Standing Water Level	m AHD	4	4	3 58	4 00	4 29
1/	0	Standing Water Level		-	-	5.50	7.00	7.23

17	BH12r	Sulfate as SO4 - Turbidimetric	mg/I	4	4	92.00	201 25	247.00
17	BH12r	Temperature	°C	1	1	19.70	20.83	21.70
17	BH12r	Total Organic Carbon	mg/l	4	4	21.00	23.00	25.00
17	BHQ		mg/L	4	4	64.80	25.00	120.00
10	BHO	Ricarbanata Alkalinity as CaCO2	mg/L	4	4	1200.00	1487 50	150.00
10	вно	Calcium	mg/L	4	4	1290.00	1487.30	242.00
18	BH9	Calcium	rng/L	4	4	161.00	198.75	242.00
18	BH9	Chloride	mg/L	4	4	381.00	501.50	626.00
18	BH9	Dissolved Iron	mg/L	4	4	0.70	3.82	5.15
18	BH9	ectrical Conductivity (Non Compensate	μS/cm	4	4	3330.00	4165.00	4700.00
18	BH9	Fluoride	mg/L	4	4	0.30	0.38	0.40
18	BH9	Manganese	mg/L	4	4	0.36	0.50	0.58
18	BH9	Nitrate as N	mg/L	4	4	0.01	0.02	0.02
18	BH9	Nitrite as N	mg/L	4	4	0.01	0.02	0.05
18	BH9	рН	pH Unit	4	4	6.70	6.98	7.20
18	BH9	Potassium	mg/L	4	4	60.00	66.75	73.00
18	BH9	Standing Water Level	m AHD	4	4	2.32	2.74	3.10
18	BH9	Sulfate as SO4 - Turbidimetric	mg/L	4	4	12.00	109.50	239.00
18	BH9	Temperature	°C	4	4	15.90	17.70	18.60
18	BH9	Total Organic Carbon	mg/L	4	4	57.00	67.25	85.00
19	SWC_2	Ammonia as N	mg/L	4	4	0.46	0.89	1.95
19	SWC_2	Calcium	mg/L	4	4	33.00	64.50	127.00
19	SWC_2	Dissolved Oxygen	mg/L	4	4	3.34	6.63	9.25
19	SWC_2	ectrical Conductivity (Non Compensate	μS/cm	4	4	1620.00	4635.00	11900.00
19	SWC_2	Fluoride	mg/L	4	4	0.20	0.25	0.40
19	SWC_2	Nitrate as N	mg/L	4	4	0.06	0.52	1.09
19	SWC_2	рН	pH Unit	4	4	7.10	7.30	7.40
19	SWC 2	Potassium	mg/L	4	4	15.00	32.25	71.00
19	SWC 2	Sulfate as SO4 - Turbidimetric	mg/L	4	4	84.00	227.25	518.00
19	SWC 2	Suspended Solids (SS)	mg/L	4	4	7.00	12.75	26.00
19	SWC 2	Total Dissolved Solids	mg/L	4	4	914.00	2936.00	7040.00
19	SWC 2	Total Organic Carbon	mg/L	4	4	8.00	13.25	27.00
20	SWC UP	Ammonia as N	mg/L	4	4	0.15	0.83	2.69
20	SWC UP	Calcium	mg/L	4	4	38.00	54.00	89.00
20	SWC UP	Dissolved Oxygen	mg/L	4	4	2.43	6.88	9.60
20	SWC UP	ectrical Conductivity (Non Compensate	uS/cm	4	4	1370.00	3412 50	7180.00
20	SWC UP	Eluoride	mg/I	4	4	0.20	0.23	0.30
20	SWC LIP	Nitrate as N	mg/L	4	4	0.01	0.53	1 13
20	SWC LIP	nH	nH Unit	4	4	7 20	7 30	7.40
20	SWC LIP	Potassium	mg/l	4	4	11.00	22.50	41.00
20	SWC LIP	Sulfate as SO4 - Turbidimetric	mg/L	4	4	74.00	181 25	340.00
20	SWC UP	Suspended Solids (SS)	mg/L	4	4	74.00	9.00	11.00
20	SWC_UP	Total Dissolved Solids	mg/L	4	4	990.00	2135.00	4130.00
20		Total Organic Carbon	mg/L	4	4	8.00	13 25	28.00
20	SWC_DOWN		mg/L	4	4	0.00	0.50	1 20
21			mg/L	4	4	15.00	72 50	172.00
21		Calciulii Discolved Owrgon	mg/L	4	4	13.00	72.30	0.27
21		Dissolved Oxygen	iiig/L	4	4	4.01	7.00	3.37
21		Eluorido	μ5/cm	4	4	0.10	58/8./5	1/100.00
21		FIUOFIGE	mg/L	4	4	0.10	0.28	0.50
21			rng/L	4	4	0.06	0.52	0.98
21		pH Determine	pH Unit	4	4	/.10	/.28	/.40
21		Potassium	mg/L	4	4	b.UU 20.00	38.50	102.00
21	SWC_DOWN	Suifate as SO4 - Turbidimetric	mg/L	4	4	29.00	2/8./5	/33.00
21		Suspended Solids (SS)	mg/L	4	4	5.00	/.50	10.00
21	SWC_DOWN	Total Dissolved Solids	mg/L	4	4	350.00	3812.50	10400.00
21	SWC_DOWN	Total Organic Carbon	mg/L	4	4	8.00	10.00	14.00

22	SWC DOWN 2	Ammonia as N	mg/L	4	4	0.19	0.28	0.32
22	SWC DOWN 2	Calcium	mg/I	4	4	16.00	60.75	118.00
22	SWC_DOWN_2		mg/L	4	4	5.66	7 73	9.54
22	SWC_DOWN_2	ectrical Conductivity (Non Compensate	uS/cm	4	4	642.00	4550.50	10900.00
22	SWC_DOWN_2	Eluoride	mg/l	4	4	0.10	0.25	0.40
22	SWC_DOWN_2	Nitrato as N	mg/L	4	4	0.07	0.52	0.40
22			nH Unit	4	4	7.10	7 20	7.40
22		Potassium	pri ullit ma/l	4	4	7.10	7.30	7.40
22		Sulfato as SOA Turbidimotric	mg/L	4	4	24.00	220.50	489.00
22	SWC_DOWN_2	Surponded Solids (SS)	mg/L	4	4	54.00	230.30	488.00
22		Total Discolved Solids	mg/L	4	4	3.00	8.75	6720.00
22	SWC_DOWN_2	Total Organic Carbon	mg/L	4	4	8 00	10.00	15.00
22			mg/L	4	4	3.60	3.64	15.00
23		Allinonia de N	mg/L	4	4	2.60	5.04	4:85
23		Calcium	mg/L	4	4	494.00	122.00	156.00
23		Calciuli	mg/L	4	4	208.00	132.00	138.00
23		Dissolved Iron	mg/L	4	4	0.15	0.22	400.00
23		petrical Conductivity (Non Companyate	us /cm	4	4	2420.00	2500.00	2610.00
23			μ3/τΠ	4	4	2430.00	2300.00	2810.00
23		Manganasa	mg/L	4	4	0.30	0.33	0.40
23	BH21	Nitrate as N	mg/L	4	4	0.33	0.44	0.80
23	BH21	Nitrate as N	mg/L	4	4	0.01	0.04	0.12
23	BHZI	Nitrite as N	ring/L	4	4	0.01	0.01	0.01
23	BH21	PH	pH Unit	4	4	7.00	7.10	7.20
23	BH21	Polassium	mg/L	4	4	16.00	18.50	20.00
23	BH21	Standing Water Level	m AHD	4	4	2.39	2.73	2.96
23	BH21	Suifate as SO4 - Turbidimetric	mg/L	4	4	204.00	296.00	351.00
23	BH21	Temperature	۰ <u>ر</u>	4	4	20.80	21.13	21.40
23	BH21		rng/L	4	4	26.00	29.50	37.00
24	BH22	Ammonia as N	mg/L	4	4	1.54	8.71	24.40
24	BH22	Bicarbonate Alkalinity as CaCO3	rng/L	4	4	428.00	548.75	688.00
24	BH22	Calcium	mg/L	4	4	117.00	139.00	160.00
24	BH22	Chioride	mg/L	4	4	186.00	231.00	274.00
24	BH22	Dissolved Iron	rfig/L	4	4	0.14	0.29	0.41
24	BH22	ectrical Conductivity (Non Compensate	μs/cm	4	4	1740.00	1927.50	2130.00
24	BH22	Fluoride	mg/L	4	4	0.20	0.25	0.30
24	BH22	Wanganese	rng/L	4	4	0.06	0.09	0.12
24	BH22	Nitrate as N	mg/L	4	4	0.01	0.01	0.01
24	BH22	Nitrite as N	ring/L	4	4	0.01	0.01	0.01
24	BH22	pH Determine	pH Unit	4	4	6.80	7.00	7.10
24	BH22	Potassium Chanding Water Louis	mg/L	4	4	22.00	24.25	30.00
24		Standing Water Level	m AHD	4	4	2.13	2.39	2.57
24	BH22	Suifate as SO4 - Turbidimetric	mg/L	4	4	102.00	175.00	255.00
24	BH22	Temperature	L	4	4	17.30	18.15	18.80
24	BH22	Total Organic Carbon	mg/L	4	4	21.00	36.50	52.00
25	BH18	Ammonia as N	mg/L	4	4	0.20	0.64	1.09
25	BH18	Bicarbonate Alkalinity as CaCO3	rng/L	4	4	113.00	262.25	412.00
25	BU10	Calcium	mg/L	4	4	30.00	b2.25	88.00
25		Discoluted	mg/L	4	4	7.00	32.25	0.00
25	BU10	Dissolved Iron	mg/L	4	4	18.0	1.60	2.34
25	впто	Ecurical Conductivity (Non Compensate	μs/cm	4	4	236.00	570.00	822.00
25	BU10	Filloride	mg/L	4	4	0.20	0.20	0.18
25		iviariganese	mg/L	4	4	0.06	0.01	0.18
25	впто	Nitrate as N	mg/L	4	4	0.01	0.01	0.01
25	впто	NITITE as N	mg/L	4	4	0.01	0.01	0.01
25	RH18	рН	pH Unit	4	4	6.50	6.70	6.90

25	BH18	Potassium	mg/L	4	4	3.00	7.00	12.00
25	BH18	Standing Water Level	m AHD	4	4	1.52	1.85	2.18
25	BH18	Sulfate as SO4 - Turbidimetric	mg/L	4	4	1.00	4.50	10.00
25	BH18	Temperature	°C	4	4	18.30	19.35	20.10
25	BH18	Total Organic Carbon	mg/L	4	4	6.00	12.50	19.00