

QUARTERLY ENVIRONMENTAL MONITORING REPORT (QEMR) MARCH 2022

DUNMORE RECYCLING & WASTE DEPOT 44 BUCKLEYS ROAD, DUNMORE, NSW, 2529

ENVIRONMENT PROTECTION LICENCE (EPL) 5984

Prepared For:Shellharbour City CouncilProject Number:ENRS0033Date:March 2022

ENVIRONMENT & NATURAL RESOURCE SOLUTIONS108 Jerry Bailey Road, Shoalhaven Heads, NSWT02 4448 5490E:projects@enrs.com.auABN68 600 154 596WWW.ENRS.COM.AU

COMMERCIAL IN CONFIDENCE

This document has been prepared consistent with accepted scientific practice, supported by available data and resource conditions, as determined by limited data acquisition during the assessment period, evident at the site at the time. The designated recipients of this report accept all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using the results of the interpretation, the data, and any information or conclusions drawn from it, whether or not caused by any negligent act or omission. To the maximum permitted by law, *ENRS Pty Ltd* excludes all liability to any person or identity, arising directly or indirectly from using the information or material contained herein.

INTELLECTUAL PROPERTY LAWS PROTECT THIS DOCUMENT

Copyright in the material provided in this document is owned by *ENRS Pty Ltd,* and third parties may only use the information in the ways described in this legal notice:

- Temporary copies may be generated, necessary to review the data.
- A single copy may be copied for research or personal use.
- The documents may not be changed, nor any part removed including copyright notice.
- Request in writing is required for any variation to the above.
- An acknowledgement to the source of any data published from this document is mandatory.

ACKNOWLEDGEMENTS

The project was conducted through close liaison with Shellharbour City Council (SCC) and ALS Environmental.

Author and Document Control

Written/Submitted by:

Taite Beeston (BSc.)Geologist & Environmental Consultant

Reviewed / Approved by:

Rohan Last (BSc. MSc) Hydrogeologist & Environmental Scientist

Record of Distribution

Copies	Report No. & Title	Status	Date	Prepared for:
1 x PDF	202203_ENRS0033r1e1_SCC Dunmore QEMR	Rev.1	20 th March 2022	ALS c/- Shellharbour City Council (SCC)

EXECUTIVE SUMMARY

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Quarterly Monitoring Report for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This report summarises the results of field testing and laboratory analysis conducted by ALS for the March 2022 quarterly monitoring period. This Quarterly Report provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

The Site was established in 1945 and has been managed by Shellharbour Council (SC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

The objectives of this AEMR are to:

- Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in a Quarterly Environmental Monitoring Report.
- The scope of work for this QEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the March 2021 monitoring period in regard to the following tasks:Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- > Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);

- Review all quarterly environmental monitoring reports from the 2020-2021 reporting period and available data from the last three (3) years; Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

Based on the findings obtained during the March 20221 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate, sulphate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-12r, BH-13, BH-14, BH-15, BH-18, BH-19r, BH-21 and BH-22. This was considered to be consistent with historical values;
- Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down 2) were reported within the adopted Site Assessment Criteria;
- During the March 2022 quarter further reductions in analyte concentrations of all Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down 2) were observed for Potassium, Calcium and Sulphate and Fluoride.
- Flare operating temperature were generally observed to be above the target operating threshold of 760 degrees Celsius but did fall below on four (4) occasions during the monitoring period. Operations taken by the operator to address the root causes of the low Flare Stack temperatures are outlined in the monthly LGI reports attached as Appendix G;
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Gas accumulation monitoring reported satisfactory results for all enclosures tested within 250m of emplaced waste or leachate storage facility;
- Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;
- No non-compliances with the EPL were reported during the March 2022 monitoring period;
- Based on this review of the March 2022 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;

- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

TABLE OF CONTENTS

EXECUT	TIVE SUMMARY	11
1.0	INTRODUCTION	1
1.1	Project Background	1
1.1.1	Site History	1
1.1.2	EPL Requirements	1
1.2	Objectives	2
1.3	Scope of Work	2
2.0	SITE DESCRIPTION	2
2.1	Location	2
2.2	Surrounding Landuse	3
2.2.1	Sensitive Receptors	4
2.3	Topography & Drainage	4
2.4	Soil Landscape	4
2.5	Geology	4
2.6	Hydrogeology	5
2.6.1	Existing Bores	
2.6.2	Flow Regime	
2.7	Surface Water	5
3.0	ASSESSMENT CRITERIA	6
3.1	Contaminants of Potential Concern	6
3.2	Water Quality Guidelines	6
3.2.1	ANZG Guidelines	6
3.2.2	National Environmental Protection Measure (NEPM)	7
3.3	Dust Deposition Assessment Criteria	7
3.4	Surface Methane GAS Assessment Criteria	7
3.5	Gas accumulation monitoring in enclosed structures	8
4.0	SAMPLING METHODOLOGY	8
4.1	Water Sampling	8
4.1.1	Location of Water Monitoring Points	8
4.1.2	Depth to Water	8
4.1.3	Sample Collection	8
4.1.4	Groundwater Sampling	
4.1.5	Field Testing	
4.2	Dust Deposition sampling	
4.3	Surface Methane Gas Monitoring	
4.4	Gas Acummulation Moitoring in enclosed structures1	0

4.5	Laboratory Analysis	10
4.6	Flare Monitoring	10
5.0	QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	10
5.1	Data Quality Objectives	10
5.2	QA/QC Procedures	11
5.3	EPL Non-Compliance	11
6.0	WATER QUALITY RESULTS	12
6.1	Overflow Results	12
6.2	Field Testing	12
6.3	Physical Indicators	
6.3.	1 Depth	12
6.3.2	2 Temperature	12
6.3.	3 Salinity (EC & TDS)	13
6.3.4		
6.3.	I	
6.3.		
6.4	Inorganic Analytes	
	rients	
6.4.		
6.4.2		
6.4.3		16
Anic		4.0
6.4.4		
6.4.		
6.4.0		
6.4. 6.4.	, ,	
-	als & Metalloids	
6.4.9		
6.4.	5	
6.4.		
6.4.		
6.4.	13 Potassium	19
6.5	Organic Analytes	19
6.5.		
7.0	DUST GAUGE RESULTS	20
8.0	METHANE MONITORING	22
8.1	Surface Gas Methane	
8.2	Gas accumulation monitoring in enclosed structures	

9.0	ENVIRONMENTAL ASSESSMENT	
9.1	Monitoring Point Summary	22
9.2	Environmental Management	23
9.2.1	Landfill Operations	
9.3	Environmental Safeguards	23
9.4	Monitoring Program	23
10.0	CONCLUSIONS	24
11.0	LIMITATIONS	
12.0	REFERENCES	

LIST OF TABLES, FIGURES & APPENDICES

TABLES

- Table 1: Site Identification
- Table 2: Surrounding Land use
- Table 3: Groundwater Assessment Criteria
- Table 4: Adopted Guideline Criteria
- Table 5: Data Quality Objectives
- Table 6:
 Summary Table of Overflow Events
- Table 7: Summary of Dust Gauge Results
- Table 8: Summary of Flare Operating Temperatures
- Table 9: Water Quality Results Comparison of Quarterly Monitoring Results Against Site

 Assessment Criteria
- Table 10: Duplicate Groundwater Sample Results and QC Data
- Table 11: Duplicate Surface Water Results and QC Data

FIGURES

- Figure 1: Site Location Map
- Figure 2: Sampling Points & Site Plan
- Figure 3: Surface Methane Gas Sample Transects
- Figure 4: Regional Geology
- Figure 5: Registered Bores

CHARTS

Chart 1 - Weekly Flare Operating Temperatures

- Chart 2 to Chart 17 Groundwater Water Quality Results 2017-2021
- Chart 18 to Chart 33 Onsite Surface Water Quality Results 2017-2021
- Chart 34 to Chart 45 Rocklow Creek Surface Water Quality Results 2017-2021
- Chart 46 to Chart 60 Leachate Water Quality Results 2017-2021

APPENDICES

Appendix A EPL 5984 Sampling Point Summary (NSW EPA, 10/05/2021)

- Appendix B Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) Water Samples
- Appendix C Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) Dust Samples
- Appendix D Surface Gas (Methane) Field Sheets
- Appendix E Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) Overflow Event
- Appendix F Calibration Certificates
- Appendix G Gas Flare Reports

1.0 INTRODUCTION

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Quarterly Environmental Monitoring Report (QEMR) for the Dunmore Recycling and Waste Depot (*herein referred to as the Site*).

This (QEMR) summarises the results of field testing and laboratory analysis conducted by ALS for the March 2022 monitoring period, and provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

1.1 PROJECT BACKGROUND

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour City Council (SSC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

In late 2020 to July 2021 Shellharbour City Council moved away from sole reliance on traditional onsite leachate management techniques through initiating a secondary leachate treatment option in which leachate was transported from site for processing at a contractor facility.

In early 2021 Shellharbour City Council constructed a new Leachate Treatment Plant (LTP) on site, which was commissioned in July/August 2021. The LTP is comprised of three primary biological treatment units, including an anoxic reactor, nitrifying reactor, and sequencing batch reactor. The treated stream meets Sydney Water requirements for discharge into Sydney Water sewer, under a trade waste agreement. On average the LTP discharges 60kL/day of treated water, equating to approximately 22ML of leachate removal from site per annum.

1.1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements is provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

1.2 OBJECTIVES

The objectives of this AEMR are to:

- Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- > Identify trends of the environmental monitoring data over the reporting period;
- Identify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- > Document monitoring results in an Annual Environmental Monitoring Report.

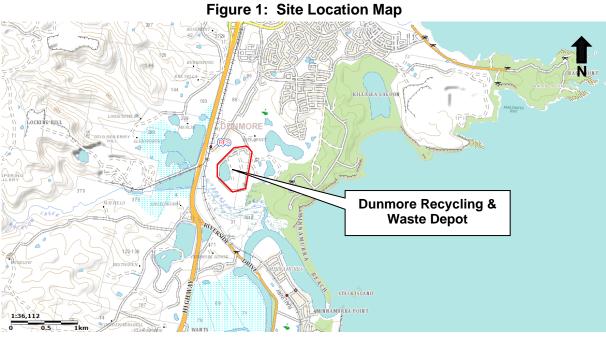
1.3 SCOPE OF WORK

The scope of work for this QEMR comprised the collation, assessment and reporting of Site data made available to ENRS from the March 2022 monitoring period in regard to the following tasks:

- > Review previous reports and document the hydrogeological setting;
- Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- > Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);
- Review all quarterly environmental monitoring reports from the 2020-2021 reporting period and available data from the last three (3) years;
- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2.0 SITE DESCRIPTION

2.1 LOCATION


The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 1** below. Details of the Site boundary and sampling points

are provided in the Site Plan (see **Figure 2**). The key features required to identify the Site are summarised in **Table 1**.

Aspect	Description
Site	Dunmore Recycling and Waste Depot
Street Address	44 Buckleys Road, Dunmore, NSW 2529
Site Area	72.36 hectares
Title Identifier	Lot 21 DP 653009, Lot 1 DP 419907
Zoning	RU1 Primary Production
Local Government Area	Shellharbour City Council

Table 1: Site Identification

Source: SIX Maps (https://maps.six.nsw.gov.au/) (cited 16/01/2020)

2.2 SURROUNDING LANDUSE

The current activities and operations on adjacent properties and the surrounding area include:

Direction	Land Use
North:	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.

Table 2: Surrounding Land use

Direction	Land Use
East:	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.
South:	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.
West:	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- > Recreational users of the Minnamurra River estuary environs;
- Down gradient stakeholders; and
- Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 TOPOGRAPHY & DRAINAGE

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 SOIL LANDSCAPE

The previous annual monitoring report (Environmental Earth Sciences 2018) reported the soil profile at the Site as organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils (ASS).

2.5 GEOLOGY

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet (see **Figure 4**). The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb) characterised by Latite. Based on the mapped geology, previous investigations and

borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 HYDROGEOLOGY

Groundwater resources in the area are expected to be associated with *Shallow unconfined* alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater. Given the spatial distribution of the bores and disturbed ground condition expected within the land fill cell, groundwater contours could not be accurately mapped.

A review of the *NSW Office of Water* (*NOW*) existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see **Figure 5**). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (*Boral Site*) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (*Environmental Earth Sciences,* 2018) have identified that groundwater flows vary across the Site, but the general trend is south, towards Rocklow Creek.

Based on the unconfined nature of the aquifers, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, was largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 SURFACE WATER

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited

to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3.0 ASSESSMENT CRITERIA

3.1 CONTAMINANTS OF POTENTIAL CONCERN

This section of the report provides a summary of the Contaminants of Potential Concern (CoPC) associated with the Site. CoPC's are identified in the Sites EPL/s which document the CoPC and water quality indicators required to be monitored. Analytical requirements for all water sampling are provided in Appendix A.

3.2 WATER QUALITY GUIDELINES

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC 1995). For the purpose of this assessment, the relevant criteria selected to protect environmental values are summarised in **Table 3** below:

Environmental Value	Relevant Guideline
Ecosystems / Health Screening Levels	ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality).
Screening Levels	National Environment Protection Measure (NEPM) (2013).
Drinking Water	Australian Drinking Water Guidelines (ADWG) (2018)

Table 3: Groundwater Assessment Criteria

3.2.1 ANZG Guidelines

The relevant criteria for this water quality assessment are the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG;2018). The ANZG (2018) provide Default Guideline Values (DGVs) for four (4) levels of protection categorised by the percentage of species possibly affected, being 80%, 90%, 95% or 99% of species. Values for a level of protection for 95% of species in a marine environment have been adopted and are displayed in **Table 4**. Where DVGs are not available reference is made against the ANZECC (2000) Trigger Values (TVs). The *NSW Office of Water* (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the **95 per cent of species level of protection**.

Parameter	Groundwater Guideline	Surface water Guideline
Ammonia	0.9 mg/L	0.9 mg/L
Nitrate	10.6 mg/L	10.6 mg/L
рН	6.5-8.5 pH units	6.5-8.5 pH units

Table 4: Adopted Guideline Criteria

Parameter	Groundwater Guideline	Surface water Guideline
Soluble Iron	0.3 mg/L	0.3 mg/L
Manganese	1.9 mg/L	1.9 mg/L
Electrical Conductivity	125-2200 µS/cm	125-2200 µS/cm

3.2.2 National Environmental Protection Measure (NEPM)

The NSW EPA has endorsed the use of the Groundwater Investigation Levels (GILs) given in the 2013 ASC NEPM 'Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater'. The latest NEPM provide a framework for risk-based assessment of groundwater contamination.

Groundwater Health Screening Levels (HSLs) are provided for four (4) land use categories for vapour intrusion (Table 1A[4]) associated with Total Recoverable Hydrocarbons TRH (F1 & F2) and BTEX compounds.

NEPM	Description of Land use Categories
HIL A	Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
HIL B	Residential B with minimal opportunities for soil access; includes buildings with fully and permanently paved yard space such as high-rise buildings and apartments.
HIL C	Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.
HIL D	Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.
GILs	Groundwater Investigation Levels (GILs) should be applied based on the receiving environment and groundwater resources. GILs are provided in NEPM Table 1C for; Fresh Waters; Marine Waters; and Drinking Water;
EILs	 Ecological Investigation Levels (EILs) for common contaminants in the top two (2) metres of soil based on three (3) generic land use settings: Areas of ecological significance; Urban residential areas and public open space; and Commercial and industrial land uses.

3.3 DUST DEPOSITION ASSESSMENT CRITERIA

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m²/month.

3.4 SURFACE METHANE GAS ASSESSMENT CRITERIA

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

3.5 GAS ACCUMULATION MONITORING IN ENCLOSED STRUCTURES

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold gas levels to ensure that gas is not accumulating within enclosed structures on or withing 250m of deposited waste or leachate storage. The acceptable threshold for 1% (volume/volume).

4.0 SAMPLING METHODOLOGY

Field sampling was conducted by *ALS Environmental* (Wollongong) as commissioned by *SCC* on quarterly basis. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following sub-sections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL's and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

4.1 WATER SAMPLING

4.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in Appendix A. The water sampling regime includes; five (5) surface waters, one (1) located onsite and four (4) located off-site; twelve (12) groundwater monitoring wells surrounding the landfill operations; and two (1) leachate point. Sampling locations are illustrated in **Figure 2** attached.

4.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. *No LNAPL was identified in monitoring Wells.*

4.1.3 Sample Collection

Sampling is conducted independently by *ALS Environmental* under contract with *SCC*. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling was conducted in accordance with *ALS* sampling protocols.

4.1.4 Groundwater Sampling

Groundwater wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated wells are sampled before likely higher contaminated wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes or low flow parameter stabilisation methods applied with field sheets provided to document

pumping volumes and field parameters. Samples were collected using clear disposal bailers. and were sealed in laboratory-prepared sampling containers appropriate for the analysis. All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Surface water and leachate samples were collected using as 'grab samples' from the midpoint of the structure and at mid-depth.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- Minimal practical disturbance during sampling;
- Samples placed in sample containers as soon as possible;
- Sample containers contain zero headspace;
- Samples placed directly on ice and transported to the laboratory as soon as possible; and
- Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

4.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- > Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- > Temperature; and
- ➢ pH (Acidity).

4.2 DUST DEPOSITION SAMPLING

Measurement of dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere.

Dust collection gauges were set up for a one (1) month period between the dates; **18**th **November** and **7**th **March 2022**. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

4.3 SURFACE METHANE GAS MONITORING

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was below 10 km/hr. Testing was conducted using a calibrated *LaserOne* portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in **Appendix F.**

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in **Figure 3**. Transects were recorded using a Magellan *SporTrak* GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste.

4.4 GAS ACUMMULATION MOITORING IN ENCLOSED STRUCTURES

The concentration of methane gas (in units of percent volume/volume) inside all enclosed structures within 250m of emplaced waste or leachate storage facility at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling testing was conducted using a calibrated *LaserOne* portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in **Appendix F.**

The internal methane concentrations for each enclosed structure were recorded by a field technician. A site plan depicting the location onsite of each structure provided in **Figure 3**. Any depressions or surface fissures away from the sampling grid were also investigated.

4.5 LABORATORY ANALYSIS

ALS, a NATA accredited laboratory, was contracted by *SCC* to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

4.6 FLARE MONITORING

Landfill gases (LFG) are formed through bacterial action on emplaced waste and are a normal by-product of Landfilling operations. Landfill gas is a mixture of many different gases, typically its major components include methane and carbon dioxide. Smaller concentrations of nitrogen, oxygen, ammonia, sulphides, hydrogen, carbon monoxide, and nonmethane organic compounds (NMOCs) and Volatile Organic Compounds (VOC's) may also be present.

When operated efficiently the use of a gas flare to burn landfill gas can significantly reduce emissions of methane, NMOCs and VOC's.

The flare was monitored, maintained and operated by *LGI LTD*. Copies of LFG reports for the relevant reporting period are included as **Appendix G**.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

5.1 DATA QUALITY OBJECTIVES

Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented by Australian Standard: AS 4482.1-2005 and referenced by the National Environment Protection

(Assessment of Site Contamination) Measure (NEPC;2013). The DQO's for the investigation were to obtain representative data to allow assessment of:

- groundwater quality;
- The risks posed to human health and the environment, including potential future users of the Site; and
- > The requirements for any further investigative works.

The assessment was conducted to a standard consistent with generally accepted and current professional consulting practice for such an investigation. The evaluation criteria adopted for the investigation are summarised in **Table 5**.

DQO	Evaluation Criteria
Documentation completeness	Completion of field records, chain of custody documentation, laboratory test certificates from NATA-accredited laboratories.
Data comparability	Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	Adequate sampling coverage of all areas of environmental concern at the Site, and selection of representative samples.
Precision and accuracy for sampling and analysis	Use properly trained and qualified field personnel and achieve field and laboratory QA/ QC criteria.

Table 5: Data Quality Objectives

5.2 QA/QC PROCEDURES

It should be noted that whilst the EPL does not require field duplicates, ENRS recommend sampling include rinsate samples and field duplicates at the standard rate of 1 in 10, or field QA/QC is conducted in accordance with *ALS* procedures.

The majority of the QA/QC data provided for this report by SC was prepared by ALS and is included in the attached ALS QC and QCI reports. ALS is NATA accredited for field sampling and laboratory testing.

Relative Percent Difference (RPD) analysis of all duplicate and triplicate samples(s) results was performed by ENRS and is included in the report as **Table 9** and **Table 10**. Results were generally reported within the acceptance criteria documented in Table 4 of AS4482.1-2005, the RPD for inorganics was set at <30% and for organics set at <50%.

Since all QA/QC results complied with the required standards, or showed variations that would have no significant effect on the quality of the data or the conclusions of this environmental assessment. Therefore, the data was considered acceptable for use in this assessment.

5.3 EPL NON-COMPLIANCE

No non-compliances were noted during the March 2022 quarterly monitoring period. Monitoring requirements are defined by the EPL.

6.0 WATER QUALITY RESULTS

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in **Table 9** with comparison against the relevant Site Assessment Criteria (SAC). The laboratory certificates of analysis are provided in Appendix B.

6.1 OVERFLOW RESULTS

Overflow samples were taken from SWP-1 on three (3) occasions during Q2 monitoring period. Summary results are included in **Table 6**. Results were consistent with EPA guidelines.

A full summary of results is provided in **Table 9** with comparison against the relevant Site Assessment Criteria (SAC). The laboratory certificates of analysis are provided in Appendix B.

Sample Date	рН	TSS	Ambient Temperature	Rainfall (mm) Previous 24Hrs
03/03/2022	8.1	17	23.1	101.8
10/03/2022	7.6	8	22.4	28.4
30/03/2020	7.8	12	22.9	19.8

Table 6: Summary Table of Overflow Events

6.2 FIELD TESTING

Field testing was conducted by ALS during sampling to record physical water parameters. A water quality meter is used to measure the following parameters in the field:

- Electrical Conductivity (Salinity);
- > pH (Acidity); and
- > Dissolved Oxygen (surface waters only).

6.3 PHYSICAL INDICATORS

6.3.1 Depth

Groundwater

Depth of ground water to top of casing (TOC) ranged between **0.49 mbgl** (BH-15, 10/03/2022) to **3.58 mbgl** (BH-12r, 10/03/2022). Across the Site groundwater levels were consistently higher in comparison to historical data sets.

6.3.2 Temperature

Groundwater

Temperature of groundwater in the March 2022 monitoring period ranged between **18.5** degrees Celsius (BH-15, 10/03/2022) and **23.0** degrees Celsius (BH-1C, 10/03/2022).

Results are consistent with historical data.

Surface Waters

Surface water temperature at SWP-1 was 18.1 degrees Celsius (10/03/2022)

Results are consistent with historical data.

Leachate

Leachate Temperatures at the leachate Tank (LP-1) was **22.0 degrees Celsius** (07/03/2022). Results are consistent with historical data.

6.3.3 Salinity (EC & TDS)

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between **125 µS/cm - 2,200 µS/cm** (~1,500 mg/L).

Groundwater

During the March 2022 monitoring period, salinity ranged between; **236 \muS/cm** (BH-18, 10/03/2022) and **7,420 \muS/cm** (BH-1C, 10/03/2022). Four (4) monitoring points reported salinity values in excess of freshwater SAC of **2,200 \muS/cm**, **7,420 \muS/cm** (BH-1c), **4,360 \muS/cm** (BH-9), **2,460 \muS/cm** (BH-12r), **2,460 \muS/cm** (BH-21).

With the exception of BH1c and BH12r which were consistent with historical data, EC readings generally trended down across the site.

Surface Waters

Electrical Conductivity results for onsite surface water (SWP-1, 10/03/2022) was **1,470 \muS/cm** which corresponds to a calculated Total Dissolved Solids result of **1,029 mg/L**. These results were below the TV.

Electrical conductivity for offsite surface waters ranged between **555 µS/cm** (SWC-DOWN, 10/03/2022) to **2,360 µS/cm** (SWC-UP, 10/03/2022).

Total Dissolved Solids results for offsite surface waters located along Rocklow Creek ranged between **350 mg/L** (SWC-DOWN, 10/03/2022) to **1,320 mg/L** (SWC-UP, 10/03/2022).

Although the results Total Dissolved Solids and EC results appear significantly lower than historical data they are consistent with a tidal creek experiencing heavy rainfall events.

Leachate

Salinity in leachate is expected to vary significantly with leachate concentration and stormwater dilution. Leachate salinity for March 2022 monitoring was **11,200 \muS/cm** (LP1, 7/03/2022) which was above the TV. Results are consistent with historical data.

6.3.4 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field during sampling. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their

efficient metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulphide and Ammonia.

The ANZECC (2000) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm.

Surface Waters

Dissolved Oxygen at SWP-1 was **3.33 mg/L** (07/03/2022). SWP-1 was not discharging at the time of sampling and are consistent with previous data.

Dissolved Oxygen for the offsite surface waters at Rocklow Creek ranged from **2.43 mg/L** (SWC-UP, 10/03/2022) to **7.17 mg/L** (SWC-DOWN, 10/03/2022). These results are consistent with a tidal creek passing through a mangrove swamp and are consistent with previous data.

Leachate

Dissolved oxygen at LP1 (Leachate Tank) was **1.32 mg/L** (07/03/2022). Results were consistent with previous data.

6.3.5 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Groundwater

Groundwater pH was reported between **pH 6.0** (BH-14, 10/03/2022) and **pH 7.2** (BH-3, BH-19r and BH-21, 10/03/2022). With the exception of BH-14 all groundwater results were reported within the ANZECC recommended range of pH 6.5-8.0 and are generally consistent with historical data.

Surface Water

Surface water for the March 2022 monitoring period reported pH values of between **pH 7.1** (SWC-DOWN2 and SWC_UP, 10/03/2022) and **pH 7.6** (SWP-1, 10/03/2022). All surface water were reported within the ANZECC recommended range of pH 6.5-8.0 and are consistent with historical data.

Leachate

Leachate pH was as reported as **pH 8.8** (LP-1, 07/03/2022). Results were reported above the ANZECC recommended range of pH 6.5-8.5. Leachate pH has been trending upward since September 2021.

6.3.6 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces.

TSS was reported for surface water only. Concentrations for the March 2022 monitoring period were reported between **10 mg/L** (SWC-DOWN, 10/03/2022 and SWC- 2, 10/03/2022) and **12 mg/L** (SWC-DOWN2, 10/03/2022). All results were below the **50mg/L** TV.

TSS results are generally consistent with historical results.

6.4 INORGANIC ANALYTES

Nutrients

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher ph.

6.4.1 Ammonia

Groundwater

For the March 2022 monitoring period, ammonia was measured within groundwater monitoring bores between **0.20 mg/L** (BH18, 10/03/2022) and **347 mg/L** (BH-1c, 10/03/2022). With the exception of BH-18 all groundwater wells exceeded of the adopted trigger value of **0.91 mg/L** for the March 2022 monitoring period. However, since the corresponding pH was below 8.00 pH units it was not considered significant. This was consistent with historical values.

Surface Water

Ammonia in surface water samples ranged from **0.32 mg/L** (SWC_DOWN_2, 10/03/2022) to **2.21 mg/L** (SWP-1, 10/03/2022). The result for SWP-1, SWC_2, and SWC_UP all exceeded the adopted trigger value of **0.91 mg/L** during the monitoring period. However, since the corresponding pH was below 8.00 pH units it was not considered significant.

Leachate

Ammonia in leachate was reported between **1020 mg/L** (LP1, 07/03/2022). High ammonia concentrations are expected in untreated leachate.

6.4.2 Nitrate

Groundwater

Results for Nitrate in groundwater were reported between **<0.01 mg/L** in multiple bores and **46.10 mg/L** (BH-14, 10/03/2022). Although results generally continue to trend downward a total of four (4) groundwater wells reported exceedances above the TV of 0.7mg/L in the March 2022 monitoring period, including BH-3, BH-12r, BH-13 and BH-14.

Surface Water

The nitrate concentration of the onsite surface water SWP-1 in the March 2022 monitoring period was **0.05 mg/L** (SWP-1; 10/03/2022).

Nitrate concentration for Rocklow Creek surface water samples in the March 2022 monitoring period ranged between <0.01 mg/L (SWC-UP; 10/03/2022) and 0.22 mg/L (SWC-DOWN_2; 10/03/2022).

The Nitrate concentration of all surface water samples was below the TV of 0.7mg/L.

Leachate

Nitrate concentration of leachate (LP-1) was <0.1mg/L in the March 2022 monitoring period.

6.4.3 Nitrite

Groundwater

Results for Nitrate in groundwater during the March 2022 monitoring period were reported between **<0.01 mg/L** in multiple bores and **0.06 mg/L** (BH-3, 10/03/2022). No exceedances were reported for nitrite during the March 2022 monitoring period. All results are below the accepted TV and consistent with previous data.

Surface Water

During the March 2022 monitoring period surface water SWP-1 was reported as **0.08 mg/L**. Although higher than Results are below the accepted TV.

Leachate

Leachate LP1 result was reported as to **<0.1 mg/L** (07/12/2021). Results are below the accepted TV and consistent with previous data.

Anions

6.4.4 Chloride

Groundwater

Results for Chloride in groundwater were reported between **7 mg/L** in (BH-18, 10/03/2022) and **855 mg/L** (BH-1c, 10/03/2022). With the exception of BH-12r which remains consistent with previous data, mean ground water chloride concentration has been trending down since December 2019.

Surface Water

During the March 2022 monitoring period chloride results for surface water SWP-1 was **184** mg/L (10/03/2022). The results are below the accepted TV and are generally consistent with historical data.

Leachate

Chloride at the Leachate Tank (LP-1) was 1290 **mg/L** (07/03/2022). Chloride results have been trending down since February 2019.

6.4.5 Fluoride

Groundwater

Results for Fluoride in groundwater were reported between **<0.1 mg/L** in multiple bores and **0.6 mg/L** (BH-14, 10/03/2022). Results are consistent with historical data.

Surface Water

Surface water results ranged from of <0.1 mg/L (SWC_DOWN and SWC_DOWN_2, 10/03/2022) and 0.4 mg/L (SWP-1, 10-03-2022). Results are generally consistent with historical data.

Leachate

The fluoride result at the Leachate tank (LP-1) was **0.2 mg/L** (07/03/2022). Results are consistent with historical data.

6.4.6 Sulphate

Groundwater

Results for Sulphate in groundwater were reported between **4 mg/L** (BH-18, 10/03/2022) and **332 mg/L** (BH-22, 10/03/2022). Results are generally consistent with previous data.

Surface Water

Sulphate in surface water ranged from **34 mg/L** (SWC_DOWN, 10/03/2022 and **192 mg/L** (SWP-1, 10/03/2022). Historical data indicates a stepwise reduction in sulphate concentration levels for Rocklow Creek surface waters from 16/06/2021 with further reduction noted in Rocklow Creek during the March 2022 period.

Leachate

Sulphate level at the leachate tank (LP-1) in the March 2022 monitoring period was **<10 mg/L** (07/03/20221). The sulphate concentration in leachate has been trending down since 2017 and has been consistent at **<10 mg/L** since December 2020.

6.4.7 Total Alkalinity

Surface Water

Total Alkalinity at SWP-1 ranged was **276 mg/L** (10/03/2022). Results are consistent with historical data.

Leachate

Total Alkalinity in Leachate (LP-1) was **4,030 mg/L** (07/03/2022). Results are consistent with historical data.

6.4.8 Bicarbonate Alkalinity

Groundwater

Bicarbonate in groundwaters ranged from **76 mg/L** (BH-14, 10/03/2022) to **2,330 mg/L** (BH-1C, 10/03/2022). Results are generally consistent with historical data.

Metals & Metalloids

6.4.9 Manganese

Groundwater

Manganese was analysed as dissolved manganese in groundwater, total manganese in surface water and total manganese in leachate sampling points. Concentrations of dissolved manganese in groundwater for the March 2022 monitoring period were reported between **0.005 mg/L** (BH-3, 10/03/2022) and **0.540 mg/L** (BH-9, 10/03/2022). Results are generally consistent with historical data.

Surface Water

The total manganese concentration at SWP-1 was from **0.180 mg/L** (10/03/2022). Results are consistent with historical data.

Leachate

Total Manganese concentrations in leachate was reported as **0.129 mg/L** (Leachate Tank LP-1, 07/03/2022). A step change reduction in manganese has been noted for the last two (2) monitoring periods with the March 2022 result down by 72% lower on the mean manganese result since Feb 2019. These values are below the adopted TV (1.9 mg/L 95% of Species freshwater) and are considered acceptable. Concentrations of Manganese should continue to be reviewed during subsequent monitoring events.

6.4.10 Iron (Total Fe)

Iron was measured as total Iron in selected surface water samples including SWP-1 and Leachate Tank.

Surface Water

Concentrations of total iron for onsite surface water was reported as **0.490 mg/L** (SWP-1, 10/03/2022). Results are generally consistent with historical data.

Leachate

Concentration of iron at the leachate Tank (LP-1) was reported between **1.08 mg/L** (07/03/2022). Results are generally consistent with historical data.

6.4.11 Iron (Dissolved Fe)

Groundwater

Dissolved iron was measured within selected groundwater and surface water sampling points. Groundwater results were reported between **0.05 mg/L** (BH3, 10/03/2022) and **12.2 mg/L** (BH1c, 10/03/2022). Results are generally consistent with historical data.

6.4.12 Calcium

Calcium was measured within selected groundwater and surface water sampling points.

Groundwater

Groundwater results were reported between **30 mg/L** (BH-18, 10/03/2022) and **229 mg/L** (BH12r, 10/03/2022). With the exception of BH-12r, reductions in calcium concentration were

observed for all groundwater samples ranging from a 7.46% reduction (BH-1C, 10/03/2022) to 66.4% reduction (BH-4, 10/03/2022).

Surface Water

Calcium in surface water ranged from **15 mg/L** (SWC_DOWN, 10/03/2022) to **42 mg/L** (SWP-1 10/03/2022).

In comparison to historical data calcium levels in Rocklow Creek continue to decline and have reached the lowest recorded levels in the March 2020 monitoring period with percent reductions ranging from 59.6% (SWC_2, 10/03/2020) to 95.1% (SWC_DOWN, 10/03/2022) when compared to mean calcium concentrations form November 2017.

Leachate

Calcium concentration in Leachate (LP-1) for the March 2022 monitoring period was **69 mg/L** (07/03/2020).

Historical observations indicate that low calcium levels have been observed for four (4) of the last six (6) sampling events since 15/12/2020 at LP-1. Leachate calcium concentration for the March 2022 period is 60.3% lower than the mean calcium concentration since 2017 of **174 mg/L**.

6.4.13 Potassium

Potassium was measured within selected groundwater and surface water sampling points.

Groundwater

Groundwater results were reported between **3 mg/L** (BH-18, 10/03/2022) and **205 mg/L** (BH1C, 10/03/2022). With the exception of BH-15 which continues to decrease the potassium levels for groundwaters are generally consistent with historical data.

Surface Water

During the March 2022 monitoring period potassium levels for the offsite groundwaters ex Rocklow Creek ranged from **6 mg/L** (SWC-DOWN, 10/03/2022) to **18 mg/L** (SWC-2 and SWC_UP, 10/03/2022).

Historical data indicates that potassium concentrations in surface waters have been trending down since 2018. A step change reduction which took place in June 2021 coupled with an addition step change reduction in March 2020 has produced the lowest potassium results on record for all Rocklow Creek sample locations with reductions of 62.7% (SWC_2, 10/03/2020) to 98.0% (SWC_DOWN, 10/03/2022) when compared to the mean potassium results for each site since November 2017.

6.5 ORGANIC ANALYTES

6.5.1 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater, however high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- > acting as proton donors/acceptors;
- providing pH buffering;
- > participating in mineral dissolution/precipitation reactions; and
- > providing carbon substrate for microbe-based biodegradation.

TOC was reported during the March 2022 monitoring period at the following concentrations:

Groundwater

TOC levels ranged between **6 mg/L** (BH-18; 10/03/2022) and **182 mg/L** (BH-1c; 10/03/2022). Results are consistent with historical data.

Surface Water

In the March 2022 monitoring period the TOC levels ranged between 14 mg/L (SWC- DOWN, 10/03/2022) and 28 mg/L (SWC_UP, 10/03/2022). With the exception of SWP-1 results are generally elevated in comparison to historical data.

Leachate

For the March 2022 monitoring period TOC concentration in leachate was **498 mg/L** (LP-1 Leachate Storage Tank 07/03/2022). The results are generally consistent with previous data

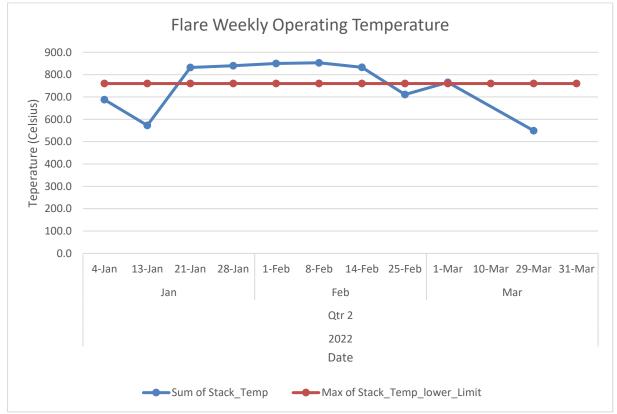
7.0 DUST GAUGE RESULTS

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month between 8th February and 9th March 2022, in general accordance with AS3580.10.1. A summary of results is provided in Table 7 below.

Sample ID	Guideline Criteria (g/m²/month)	Total Insolvable Matter (g/m²/month)	Comments
DDG1		0.1	Satisfactory
DDG2	4	<0.1	Satisfactory
DDG3		0.3	Satisfactory
DDG4		0.3	Satisfactory

Table 7: Summary of Dust Gauge Results

Results for depositional dust during the March 2022 quarterly monitoring period reported levels of dust below the adopted assessment criteria of **4 g/m²/month**.


The results were considered satisfactory. Dust gauge locations are provided in **Figure 2** attached. It is recommended that monitoring is continued in accordance with EPL 5984.

Monitoring Period	Month	Date	Average Flare Temp
	Jan	4-Jan	688.0
		13-Jan	573.0
		21-Jan	832.0
		28-Jan	840.0
	Mean January Temp		733.3
	Feb	1-Feb	850.0
		8-Feb	853.0
Qtr 2		14-Feb	833.0
		25-Feb	711.0
	Mean February Temp		811.8
	Mar	1-Mar	765.0
		10-Mar	
		29-Mar	549.0
		31-Mar	
	Mean March Temp		657.0
		Qtr 2 Total	749.4

Table 8: Summary of Flare Operating Temperatures

Weekly average operating temperatures supplied by LGI displayed typical variation associated with a continuous process.

Weekly operating temperatures at the Flare were generally above the Lower Limit of 760 degrees throughout the March 2022 monitoring period only falling below the lower control limit on 4 out of 10 occasions.

LGI advise that reduced Flare temperatures are a consequence of high moisture levels within the landfill negatively impacting gas extraction operations. The actions taken to address the root causes are outlined in the LGI Gas Flare report included as **Appendix G**.

8.0 METHANE MONITORING

8.1 SURFACE GAS METHANE

The surface gas monitoring for the March 2022 monitoring period *DID NOT* detect any levels of methane above the EPA license limits of 500 ppm. The results were considered satisfactory. A table of results is provided in Appendix D.

8.2 GAS ACCUMULATION MONITORING IN ENCLOSED STRUCTURES

The internal methane testing for enclosed structures within 250m of the landfill during the March 2022 monitoring period *DID NOT* detect any levels of methane above the EPA license limits of 1% V/V. The results were considered satisfactory. A table of results is provided in Appendix D.

9.0 ENVIRONMENTAL ASSESSMENT

9.1 MONITORING POINT SUMMARY

Field measurements and NATA laboratory results for dust and methane results for the March 2022 monitoring period reported satisfactory results. Water results including leachate, groundwater, onsite and offsite surface water reported concentrations of analytes within the range historical values. Water results from the last four (4) years have been tabulated and presented **Charts 1-59** attached.

Groundwater and surface water within the Site boundary generally reported multiple high levels of analytes considered to be characteristic of landfill and leachate. Offsite sample locations within Rocklow Creek generally reported satisfactory results.

Generally, all dust gauges reported satisfactory results over the March 2022 monitoring period.

Results of surface methane gas monitoring recorded satisfactory results. The landfill surface cap was therefore considered intact and effective during the monitoring period.

Gas accumulation monitoring reported satisfactory results for all enclosed structures within 250m of emplaced waste or leachate storage facility.

Results for flare monitoring reported consistent temperature exceedances throughout the March 2022 monitoring period.

9.2 ENVIRONMENTAL MANAGEMENT

9.2.1 Landfill Operations

ENRS understand 'solid' waste (general solid waste putrescible and non-putrescible) landfill operations are ongoing at the Site. Landfill practices should be conducted in accordance with the Site's Landfill Environmental Management Plan (LEMP) and the EPA Solid Waste Landfill Guidelines (EPA; 2016).

9.3 ENVIRONMENTAL SAFEGUARDS

Appropriate management actions are required to continue to prevent and detect potential groundwater and surface water pollution. The nearest sensitive receptors for any uncontrolled Site water and leachate include; areas of adjoining bushland; recreational users of the Minnamurra River estuary environs, down gradient stakeholders; and down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE).

It is recommended that any drainage and detention structures are inspected annually by a suitably qualified environmental professional to assess their structural integrity and identify the need for any maintenance (such as removal of deep rooted vegetation, sediment, and relining).

Access tracks to sampling points should be inspected prior to each quaterly sampling events.

Continue to review annual surface and groundwater monitoring results from up and down gradient of the land fill cells and offsite sampling locations within Rocklow Creek. Continue to monitor surface methane gas in order to assess the cappping integrity of the landfill cells.

9.4 MONITORING PROGRAM

The water, dust and surface methane monitoring program are required to demonstrate that Site activities are not generating any off-site pollution. The Site's EPL's and monitoring regime should be reviewed annually.

Review of the March 2022 monitoring results indicate no significant change in environmental conditions at the Site during the past 3 months. Future sampling events should continue to monitor the key indicators of leachate within surface and ground waters, especially concentration of ammonia and nitrate.

Should monitoring continue to report any significant changes in analyte concentrations the need for additional monitoring locations should be reviewed, including additional groundwater monitoring bores both up and down gradient locations of areas with analytical exceedances.

It is recommended that water quality results from future monitoring rounds continue be forwarded to a suitably qualified environmental professional for review within the laboratory holding time to compare against relevant guidelines and identify any irregularities so that additional testing may be conducted within the holding time.

10.0 CONCLUSIONS

Based on the findings obtained during the March 2022 monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater throughout the monitoring period reported exceedances of the assessment criteria for; ammonia, heavy metals, nitrate, sulphate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-12r, BH-13, BH-14, BH-15, BH-18, BH-19r, BH-21 and BH-22. This was considered to be consistent with historical values;
- Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down
 2) were reported within the adopted Site Assessment Criteria;
- During the March 2022 quarter further reductions in analyte concentrations of all Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down 2) were observed for Potassium, Calcium and Sulphate and Fluoride.
- Flare operating temperature were generally observed to be above the target operating threshold of 760 degrees Celsius but did fall below on four (4) occasions during the monitoring period. Operations taken by the operator to address the root causes of the low Flare Stack temperatures are outlined in the monthly LGI reports attached as Appendix G;
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Gas accumulation monitoring reported satisfactory results for all enclosures tested within 250m of emplaced waste or leachate storage facility;
- Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;
- No non-compliances with the EPL were reported during the March 2022 monitoring period;
- Based on this review of the March 2022 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- > This report must be read in conjunction with the attached Statement of Limitations.

11.0 LIMITATIONS

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

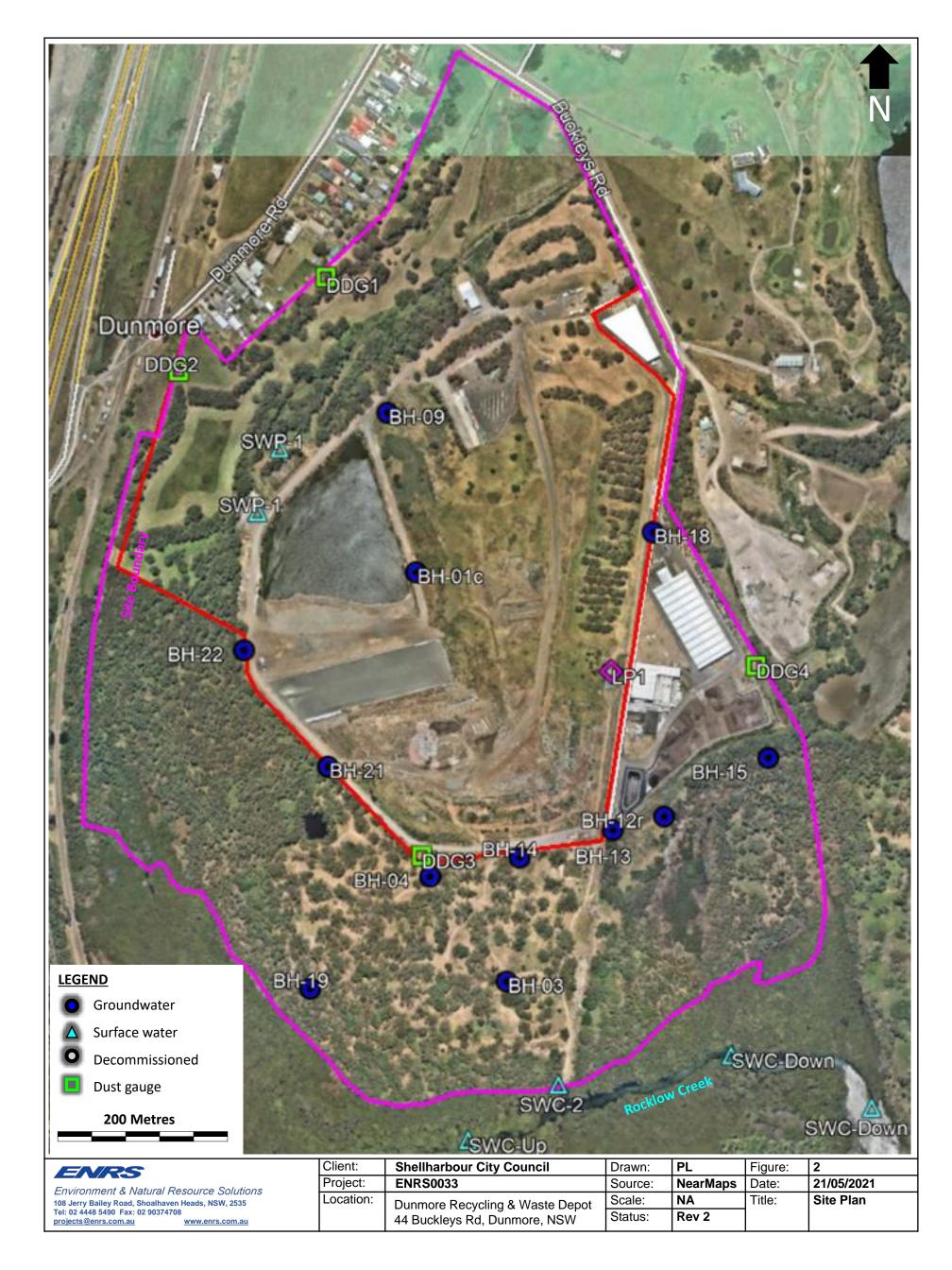
ENRS derived the data in this report primarily from visual inspections, examination of available records, interviews with individuals with information about the site, and if requested, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e., the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.

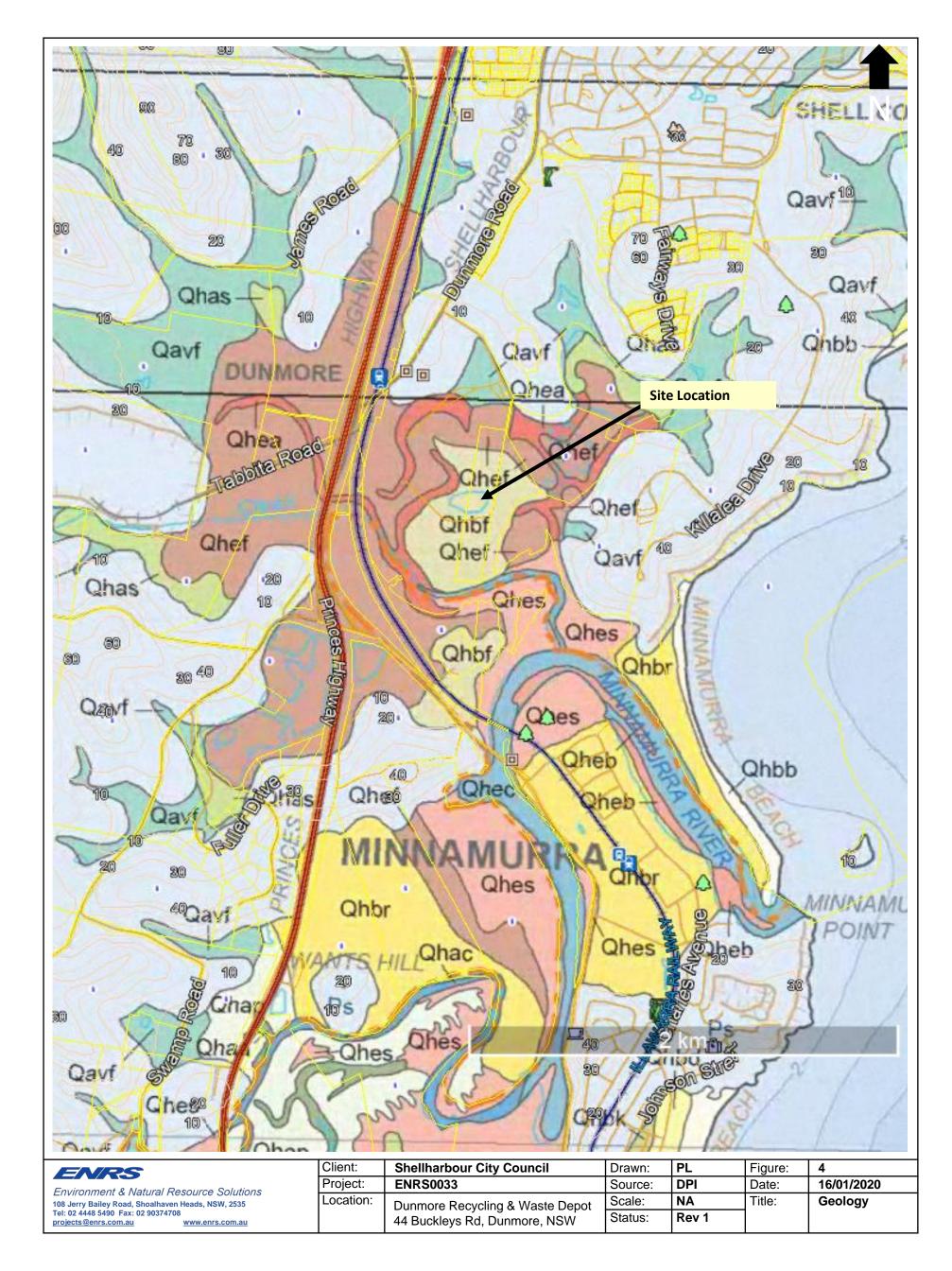
The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of the site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g., changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

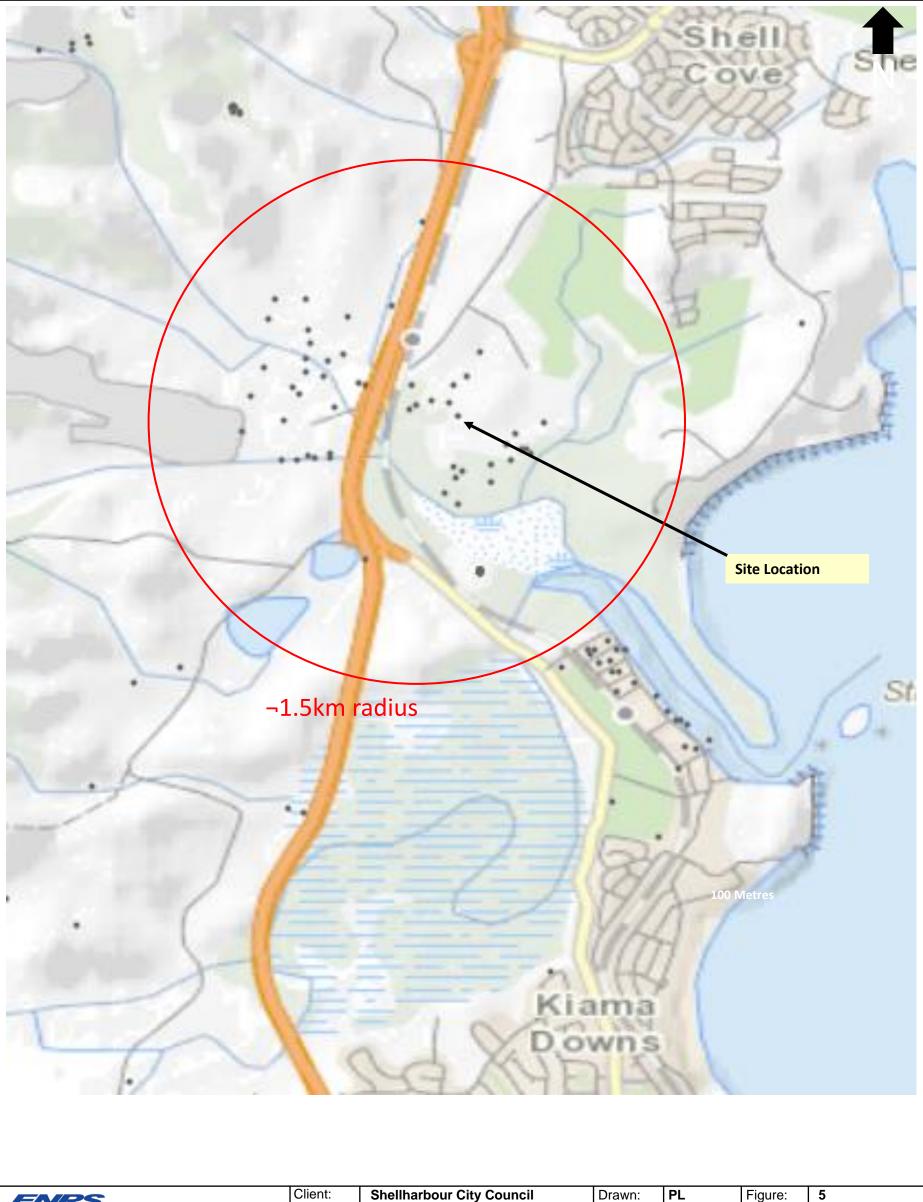
This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.




12.0 REFERENCES


- ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.
- ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council. ISBN 09578245 0 5 (set).
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia.
- Australian Government (2011) National Health & Medical Research Council. National Resource Management Ministerial Council. National Water Quality Strategy. Australian Drinking Water Guidelines.
- Australian Standard AS 3580.10.1. Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter Deposited matter Gravimetric method
- Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales
- NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure.
- Netherlands (1994) Environmental Quality Objectives in the Netherlands. Ministry of Housing, Spatial Planning and the Environment, Netherlands Government. ISBN 90-6092-783-4.
- NSW Department of Environment and Climate Change (2009a). Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination
- NSW EPA (1995) Sampling Design Guidelines. ISBN 0-7310-3756-1.
- NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination.
- NSW EPA (1996) Environmental Guidelines: Solid Waste Landfills. ISBN 0 7310 3774 X
- NSW EPA (2016) Environmental Guidelines: Solid Waste Landfills (2nd Edition). ISBN 978 1 76039 350 2
- NSW EPA (Mar. 2020) Environmental Protection Licence (EPL) 5984
- NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903
- NSW Government (1997). Protection of the Environment Operations Act.
- NSW Government (2005). Protection of the Environment (Waste) Regulation.
- NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B Waste Landfills.



FIGURES

ENRS	Client.	Shellharbour City Council	Drawn:	PL	Figure:	5
Environment & Natural Resource Solutions	Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535	Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Registered
Tel: 02 4448 5490 Fax: 02 90374708 projects@enrs.com.au www.enrs.com.au		44 Buckleys Rd, Dunmore, NSW	Status:	Rev 1		Bores

TABLES

202203_enrs0033r1e1_scc dunmore qemr

				Qu	arterly W			9: To Results					I lts ling and V	Naste D	epot													
s -Trigger Values for Freshwat	ter (Protection of 95% of S	pecies) ^A		-	-	-	-	-	1.9	-		-	0.9 (pH 8)	-	0.7	-		-	-	-	-	-	-	6.5 - 8.5	2200	-	-	
Ls -Trigger Values for Marine W	later (Protection of 95% of	Species) ^A		-	-	-	-	-	-	-	-	-	0.91 (pH 8)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
stralian Drinking Water Guidelir	nes (2018) ^c		Health	-	-	-	-	-	0.5	-	-	1.5	-	3	50	-	-	-	-	-	-	-	-	6.5 - 8.5	-	-	-	
			Aesthetic	250	-	-	180	-	0.1	0.3	0.3	-	0.5		-	-	-	-	250	-	-	-	5	6.5 - 8.5	-	-	-	
.ab por Sample No. t.	Sample type	EPA No,	Date Sampled	Chloride	Całcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Nitrite as N	Nitrate as N	Total Organic Carbon	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Dissolved Oxygen	Dissolved Oxygen - % Saturation	Suspended Solids (SS)	Turbidity	H	Electrical Conductivity (Non Compensated)	Temperature	Standing Water Level	Comments
			Units Laboratory PQL		mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.01	% 0.1	mg/L 5	NTU 0.1	рН 0.01	μS/cm 1	°C 0.1	mbgl -	-
BH1c	Groundwater	3	Mar 2022	855	124			205	0.12		12.20	0.2	347	< 0.01	< 0.01	182	2,330	2,330	< 10					7.00	7,420	23.0	2.47	
ВНЗ	Groundwater	5	Mar 2022	82	115			27	0.01		< 0.05	< 0.1	2.56	0.03	10.20	16	280	280	104					7.20	1,060	18.9	1.42	
BH4	Groundwater	6	Mar 2022	86	80			7	0.07		0.54	< 0.1	2.77	0.03	0.63	12	252	252	58					7.00	831	19.5	2.83	
BH9	Groundwater	18	Mar 2022	484	215			69	0.54		5.15	0.3	76.8	< 0.01	0.01	63	1,630	1,630	73					7.00	4,360	18.6	2.32	
BH12r	Groundwater	17	Mar 2022	405	229			50	0.52		11.40	0.2	4.98	0.10	5.20	25	465	465	240					6.70	2,460	21.1	3.58	
BH13	Groundwater	10	Mar 2022	28	101			6	0.04		0.33	0.2	0.22	0.09	4.00	13	297	297	46					6.60	727	21.0	2.93	
BH14	Groundwater	11	Mar 2022	18	75			41	0.07		0.09	0.6	0.29	0.01	46.10	43	76	76	85					6.00	796	21.0	2.85	
BH15	Groundwater	7	Mar 2022	296	59			152	0.19		6.12	0.2	9.17	0.02	0.10	34	317	317	261					7.00	2,140	18.5	0.49	
BH18	Groundwater	25	Mar 2022	7	30			3	0.06		0.81	0.2	0.20	< 0.01	< 0.01	6	113	113	4					6.90	236	20.1	1.52	
BH19r	Groundwater	16	Mar 2022	91	83			22	0.04		0.48	0.1	1.67	0.05	0.52	27	258	258	98					7.20	924	19.4	3.43	
BH21	Groundwater	23	Mar 2022	349	125			18	0.44		0.39	0.3	2.60	< 0.01	< 0.01	28	502	502	332					7.20	2,460	21.2	2.39	
BH22	Groundwater	24	Mar 2022	186	129			22	0.08		0.41	0.3	2.13	< 0.01	< 0.01	21	428	428	230					7.10	1,740	18.6	2.13	
SWP1	Surfacewater	1	Mar 2022	184	42	32	187	8	0.18	0.49	< 0.05	0.4	2.21	0.08	0.05	20	276	276	192	3.33		11	10.60	7.60	1,470	18.1		
SWC_up	Surfacewater	20	Mar 2022	564	39	44	317	18	0.68	1.73	0.86	0.2	2.69	< 0.01	< 0.01	28	148	148	123	2.43		11	14.30	7.20	2,360	16.6		
SWC_2	Surfacewater	19	Mar 2022	362	33	31	218	18	0.29	1.53	0.80	0.2	1.95	< 0.01	0.06	27	135	135	84	3.34		10		7.10	1,620	17.0		
SWC_down	Surfacewater	21	Mar 2022	110	15	11	70	6	0.09	1.32	0.32	0.1	0.36	< 0.01	0.17	14	67	67	29	7.17		10	15.00	7.20	555	15.4		
SWC_down_2	Surfacewater	22	Mar 2022	135	16	13	82	7	0.10	1.39	0.30	0.1	0.32	0.02	0.22	15	70	70	34	6.46		12	14.80	7.10	642	17.4		
Leachate Storage Tank LP1	Leachate	2	Mar 2022	1,290	69			367	0.13	1.08		0.2	1020	< 0.10	< 0.10	498	3,620	4,030	< 10	1.32	15.7			8.80	11,200	22.0		

Investigation levels apply to typical slightly-moderately disturbed systems. Trigger Levels for 95% of species. See AVECCC 2000 - PUtyper and Lover Limit for KSW Lowland Rivers (Table 3.3.2), Investigation levels are taken from the health values of the Australian Drinking Water Gudelines (NHMRC 2011). NEPM (2013 Table 14(4) Groundwater HSLs for vapour intrusion (Sanda Tan-4m)

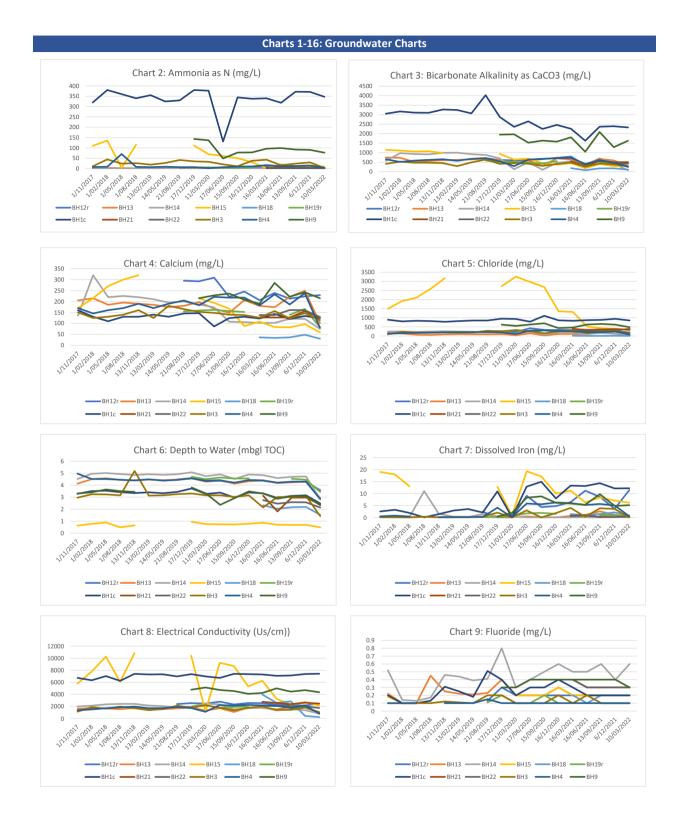
TABLE 10: Duplicate Groundwater Sample Results and QC Data

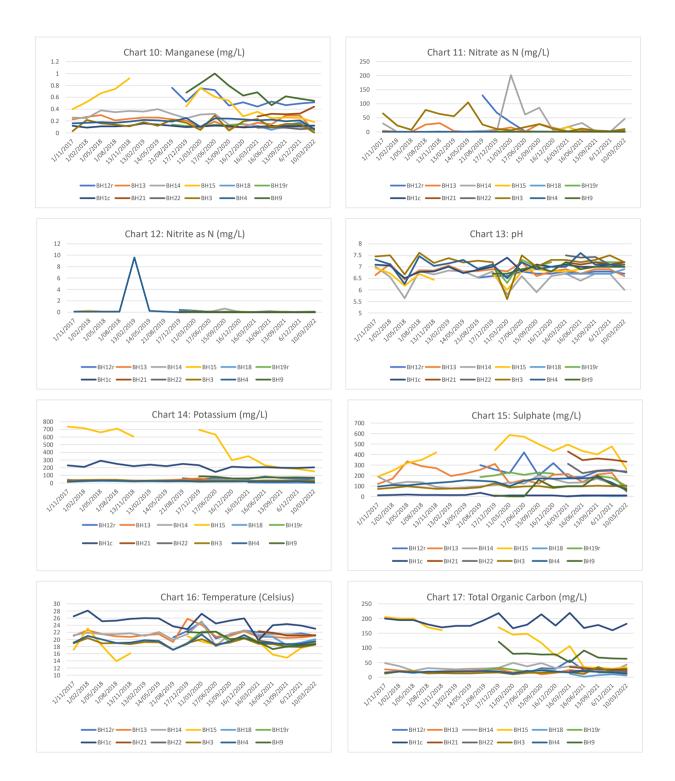
					-	
Lab Report.						
Sample No.				BH18	GWDuplicate	
Sample type				Groundwater	GWQC	RPD
EPA No,				25	KFD	
Date Sampled			10/03/2022	10/03/2022		
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	7	7	0.00
Calcium	mg/L	1	5	30	30	0.00
Potassium	mg/L	1	5	3	3	0.00
Manganese	mg/L	0.001	0.005	0.055	0.056	2.70
Dissolved Iron	mg/L	0.05	0.25	0.81	0.80	1.86
Fluoride	mg/L	0.1	0.5	0.2	0.3	60.00
Ammonia as N	mg/L	0.01	0.05	0.20	0.19	7.69
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Total Organic Carbon	mg/L	1	5	6	6	0.00
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	113	114	1.32
Total Alkalinity as CaCO3	mg/L	1	5	113	114	1.32
Sulfate as SO4 - Turbidimetric	mg/L	1	5	4	4	0.00
рН	рН	0.01	0.05	6.90	6.90	0.00
Electrical Conductivity (Non Compensated)	µS/cm	1	5	236	236	0.00
Temperature	°C	0.1	0.5	20.1	20.1	0.00
Standing Water Level	mbgl	-		1.5	1.5	0.00

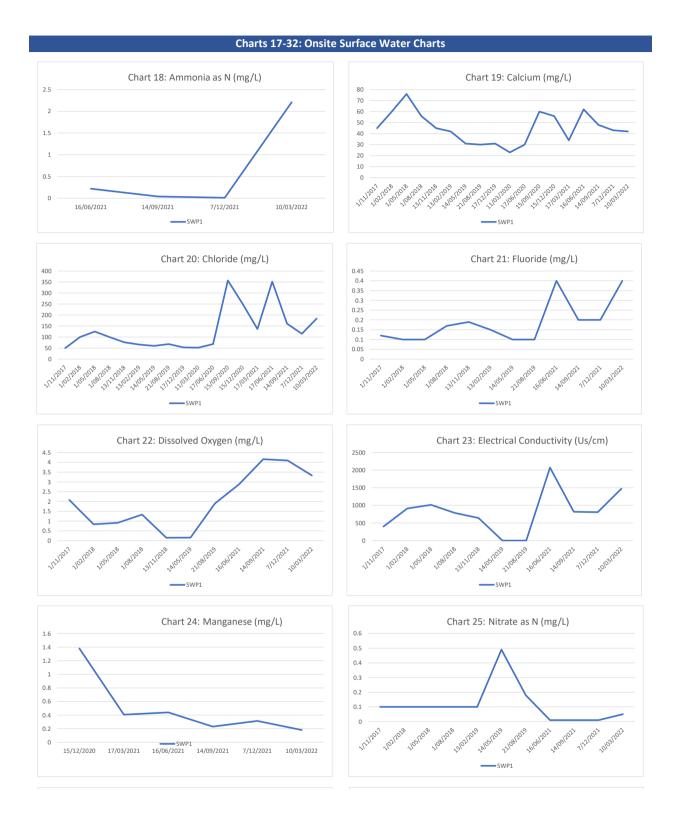
TABLE 11: Duplicate Surface Water Results and QC Data

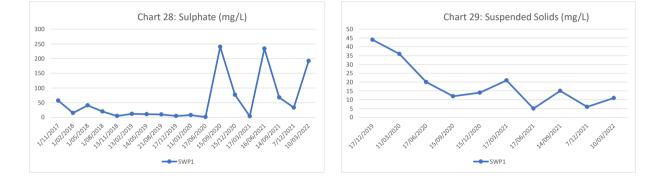
Lab Report.						
Sample No.				SWC_UP	SWDuplicate	
Sample type				Surfacewater	OffSiteSWQC	RPD
EPA No,				20	RPD	
Date Sampled				10/03/2022		
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	564	563	0.27
Calcium	mg/L	1	5	39	38	3.90
Potassium	mg/L	1	5	18	18	0.00
Manganese	mg/L	0.001	0.005	0.680	0.668	2.67
Total Iron	mg/L	0.05	0.25	1.73	1.99	20.97
Dissolved Iron	mg/L	0.05	0.25	0.86	0.86	0.00
Fluoride	mg/L	0.1	0.5	0.2	0.2	0.00
Ammonia as N	mg/L	0.01	0.05	2.69	2.75	3.31
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Total Organic Carbon	mg/L	1	5	28	31	15.25
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	148	147	1.02
Total Alkalinity as CaCO3	mg/L	1	5	148	147	1.02
Sulfate as SO4 - Turbidimetric	mg/L	1	5	123	117	⊘ 7.50
Dissolved Oxygen	mg/L	0.01	0.05	2.43	1.84	😣 41.45
рН	рН	0.01	0.05	7.20	7.10	2.10
Electrical Conductivity (Non Compensated)	µS/cm	1	5	2,360	2,350	o 0.64
Temperature	°C	0.1	0.5	16.6	16.7	0.90

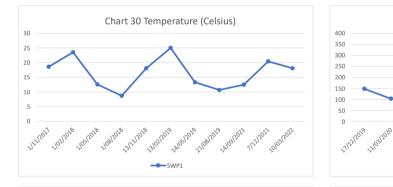
TABLE 10: Duplicate Groundwater Sample Results and QC Data

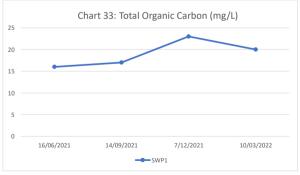

					-	
Lab Report.						
Sample No.				BH18	GWDuplicate	
Sample type				Groundwater	GWQC	RPD
EPA No,				25	KFD	
Date Sampled			10/03/2022	10/03/2022		
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	7	7	0.00
Calcium	mg/L	1	5	30	30	0.00
Potassium	mg/L	1	5	3	3	0.00
Manganese	mg/L	0.001	0.005	0.055	0.056	2.70
Dissolved Iron	mg/L	0.05	0.25	0.81	0.80	1.86
Fluoride	mg/L	0.1	0.5	0.2	0.3	60.00
Ammonia as N	mg/L	0.01	0.05	0.20	0.19	7.69
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Total Organic Carbon	mg/L	1	5	6	6	0.00
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	113	114	1.32
Total Alkalinity as CaCO3	mg/L	1	5	113	114	1.32
Sulfate as SO4 - Turbidimetric	mg/L	1	5	4	4	0.00
рН	рН	0.01	0.05	6.90	6.90	0.00
Electrical Conductivity (Non Compensated)	µS/cm	1	5	236	236	0.00
Temperature	°C	0.1	0.5	20.1	20.1	0.00
Standing Water Level	mbgl	-		1.5	1.5	0.00


TABLE 11: Duplicate Surface Water Results and QC Data


Lab Report.						
Sample No.				SWC_UP	SWDuplicate	
Sample type				Surfacewater	OffSiteSWQC	RPD
EPA No,				20	RPD	
Date Sampled				10/03/2022		
Analyte	Units	PQL	5 x PQL	Result	Result	
Chloride	mg/L	1	5	564	563	0.27
Calcium	mg/L	1	5	39	38	3.90
Potassium	mg/L	1	5	18	18	0.00
Manganese	mg/L	0.001	0.005	0.680	0.668	2.67
Total Iron	mg/L	0.05	0.25	1.73	1.99	20.97
Dissolved Iron	mg/L	0.05	0.25	0.86	0.86	0.00
Fluoride	mg/L	0.1	0.5	0.2	0.2	0.00
Ammonia as N	mg/L	0.01	0.05	2.69	2.75	3.31
Nitrite as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Nitrite + Nitrate as N	mg/L	0.01	0.05	< 0.01	< 0.01	0.00
Total Organic Carbon	mg/L	1	5	28	31	15.25
Bicarbonate Alkalinity as CaCO3	mg/L	1	5	148	147	1.02
Total Alkalinity as CaCO3	mg/L	1	5	148	147	1.02
Sulfate as SO4 - Turbidimetric	mg/L	1	5	123	117	⊘ 7.50
Dissolved Oxygen	mg/L	0.01	0.05	2.43	1.84	😣 41.45
рН	рН	0.01	0.05	7.20	7.10	2.10
Electrical Conductivity (Non Compensated)	µS/cm	1	5	2,360	2,350	o 0.64
Temperature	°C	0.1	0.5	16.6	16.7	0.90


CHARTS

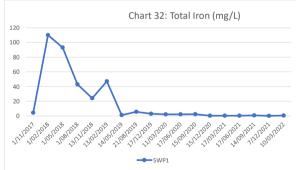


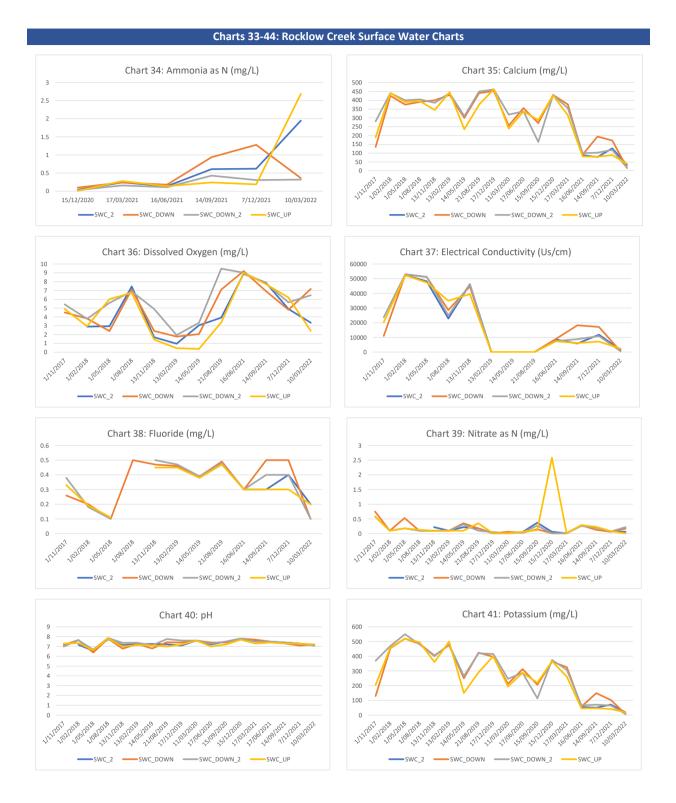


15/12/2

27/03

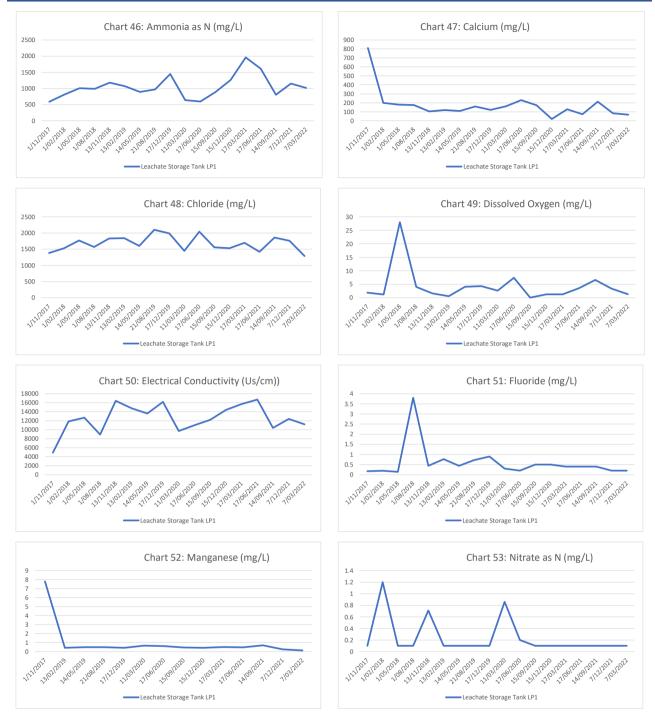
171061201

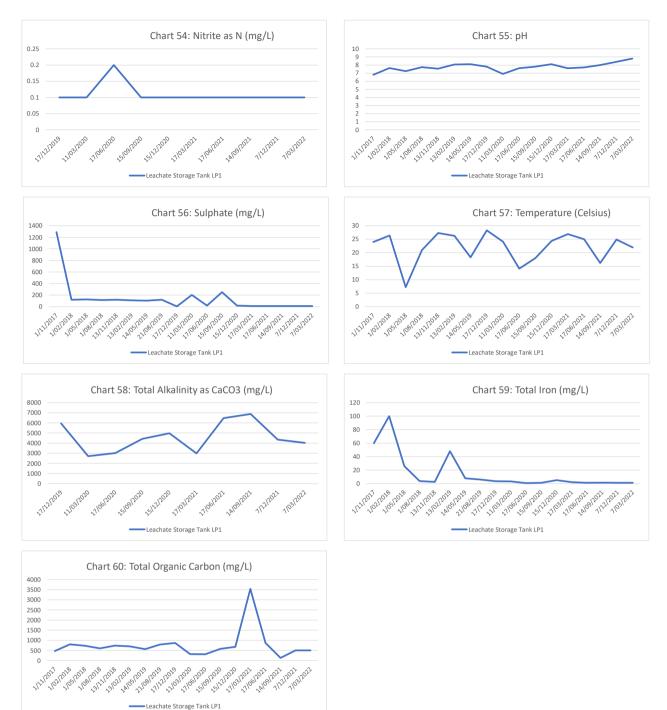

Chart 31: Total Alkalinity (mg/L)


1106120

241091

11222021


10/03/207



Charts 45-59 Leachate Water Quality Charts

APPENDICES

Appendix A

EPL 5984 Sampling Point Summary (NSW EPA, 10/05/2021)

2	Leachatemonitoring	Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring	BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring	BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring	BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring	BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring	BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring	BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring	BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring	BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).

18 Groundwater monitoring BH9 - as shown on the drawing 18 Groundwater monitoring titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 19 Surface Water Monitoring SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 20 Surface Water Monitoring SWC_D - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Monitoring Point Location Plan - Dummore Regulting and Waste Depot. = Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Regulting and Waste Depot. = EUN. Si94" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20317779). 24 Groundwater monitoring BH22 - as shown on then drawing titled "Monitoring Poi			
19 Surface Water Monitoring Surface Water Monitoring SWC 2- as shown on the drawing titled "Shellharbour City Council - Dummer, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 20 Surface Water Monitoring SWC	18	Groundwater monitoring	, i i i i i i i i i i i i i i i i i i i
Figure no. 1° dated July 2019 (EPA Ref. no. DOC 19/1027702). 19 Surface Water Monitoring SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dummore, SW- Site Layout - Figure no. 1° dated July 2019 (EPA Ref. no. DOC 19/1027702). 20 Surface Water Monitoring SWC_(UP - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1° dated July 2019 (EPA Ref. no. DOC 19/1027702). 21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1° dated July 2019 (EPA Ref. no. DOC 19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1° dated July 2019 (EPA Ref. no. DOC 19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 25 Groundw			-
Perf. no. DOC 19/1027702). 19 Surface Water Monitoring SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 20 Surface Water Monitoring SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/31779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/31779). 25 Groundwater monitoring BH14 - as shown on drawing t			
20 Surface Water Monitoring Burface Water Monitoring Surface Water Monitoring 20 Surface Water Monitoring SWC_UP - as shown on the drawing titled 'Shellharbour City Council - Diumore, NSW - Site Layout - Figure no. 1' dated July 2019 (EPA Ref. no. DOC19/1027702). 21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled 'Shellharbour City Council - Diumore, NSW - Site Layout - Figure no. 1' dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled 'Shellharbour City Council - Diumore, NSW - Site Layout - Figure no. 1' dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled 'Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1' dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled ''Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984' prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled ''Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984' prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled ''Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984' prepared by Cardno and attached to correspondence dated 7 Apri	10		Ref. no. DOC19/1027702).
20 Surface Water Monitoring Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 20 Surface Water Monitoring SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 21 Surface Water Monitoring SWC_DD-WN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DD-WN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DD/WN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to corres	19	Surface Water Monitoring	-
20 Surface Water Monitoring Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 20 Surface Water Monitoring Surgare no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 21 Surface Water Monitoring SWC_DUP - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring SWC_DOWN2 - as shown on the drawing titled "Nonitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 correspondence dated 7 April 2020 correspondence dated 7 April 2020 correspondence dated 7			
20 Surface Water Monitoring SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH81 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (CPA ref. no. DOC20/317779).			-
drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on thad drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			
21 Surface Water Monitoring Surface Water Monitoring Surface Water Monitoring 21 Surface Water Monitoring Surface Water Monitoring Surface Shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 22 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 019/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC 20/31777). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC 20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC 20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling a	20	Surface Water Monitoring	
Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 13/1027702). 21 Surface Water Monitoring 21 Surface Water Monitoring 22 Swc_DOWN - as shown on the drawing titled "Shellharbour City Council - Dumore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC 19/1027702). 22 Surface Water Monitoring 23 Groundwater Monitoring 23 Groundwater Monitoring 24 Groundwater monitoring 25 Groundwater monitoring 24 Groundwater monitoring 25 Groundwater monitoring 26 Groundwater monitoring 27 BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/			
2019 (EPA Ref. no. DOC 19/1027702). 21 Surface Water Monitoring 21 Surface Water Monitoring 22 Surface Water Monitoring 22 Surface Water Monitoring 23 Surface Water Monitoring 24 Groundwater Monitoring 25 Groundwater monitoring 24 Groundwater monitoring 25 Groundwater monitoring 24 Groundwater monitoring 25 Groundwater monitoring 26 Groundwater monitoring 27 Brann monitoring 28 Groundwater monitoring 29 BH21 - as shown on the drawing titled 30 Groundwater Monitoring 30 BH21 - as shown on drawing titled 310 Groundwater Monitoring 311 BH21 - as shown on drawing titled 310 Groundwater monitoring 311 BH21 - as shown on drawing titled 311 Groundwater monitoring 312 Broundwater monitoring 313 BH21 - as shown on drawing titled 314 Monitoring Point Location Plan - Dunmore Recycling and W			
21 Surface Water Monitoring SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).			
drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring WC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring 25 Groundwater monitoring			•
Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOCC19/1027702). 22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste <td>21</td> <td>Surface Water Monitoring</td> <td>—</td>	21	Surface Water Monitoring	—
22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).			÷ ,
2019 (EPA Ref. no. DOC19/1027702). 22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			
22 Surface Water Monitoring SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dummore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dummore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			
drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled			•
Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan -	22	Surface Water Monitoring	—
Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 25 Groundwater monitoring			
2019 (EPA Ref. no. DOC19/1027702). 23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 25 Groundwater monitoring			
23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste 26 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste 27 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste			
23 Groundwater Monitoring BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 EVA ref. no. DOC20/317779).			•
Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).24Groundwater monitoringBH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).25Groundwater monitoringBH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).25Groundwater monitoringBH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).	23	Groundwater Monitoring	•
Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).24Groundwater monitoringBH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).25Groundwater monitoringBH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).25Groundwater monitoringBH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).			-
Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			· -
24 Groundwater monitoring BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). 25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			
24Groundwater monitoringBH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).25Groundwater monitoringBH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).25Groundwater monitoringBH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			
 "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 			
Dunmore Recycling and WasteDepot - EPL No. 5984" prepared byCardno and attached tocorrespondence dated 7 April 2020(EPA ref. no. DOC20/317779).25Groundwater monitoringBH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020	24	Groundwater monitoring	e e e e e e e e e e e e e e e e e e e
25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779). BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			0
25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 correspondence dated 7 April 2020			· -
25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 Cardno and attached to			
25 Groundwater monitoring BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			correspondence dated 7 April 2020
"Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			
Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020	25	Groundwater monitoring	•
Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020			-
Cardno and attached to correspondence dated 7 April 2020			
correspondence dated 7 April 2020			

Appendix B

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples

不	CHAIN OF CUSTODY ALS Laboratory: please tick →	11 Sydnay 2011 Memorik (Phylo2 9164 8666 Broantale 11 Newcestler & Rosogum)	a were) @arw	naro con 🔋 Phá? 2243-7222 B	Eisamoles bilisb	នេះចម្លើទៅសមាននេះ ភ	19 de 11 3	Merbourne -2- 103-3849-9600 f Adelaide: 2-1	El completarin Suma Rd. Pi	Hournegalse Sumka SA 5091	Nati OCC	C Launcestor	855 E. samples. et 27 Weilingtor	penhiĝisteuroro com Est. Lumceatori TAS 7280
(ALS)		Ph (t. 1986-9405 E sampia	u ne voastreliĝijals	epsiro doni - Ph 67 4798 0800 E				h. C8 6050 (385	E adecaide <u>a</u>	alsenvira ocini		bi cois-co	Antonia transfer di Aster	andalaervic com RY USE ONLY (Circle)
CLIENT:	Shellharbour City Council		1	UND REQUIREMENTS : If may be longer for some tests		ard TAT (List o							ty Seal Intact?	\sim
DFFICE:	41 Burelli St WOLLONGONG NSW 2		e.g., Ultra Tra	ce Organics)	30/19 TENDI	tandard or urge	ent IAI (L		COC SEQU	ENCE NUMB	R (Circle)	Freelic	ce / frozen ice	bricke present upon Yes No N/A
PROJECT:	Dunmore Quarterly Ground Waters	EPL	ALS QUOT	ENO.: W0/0	30/19 12(0)	_n		coc:	1 2	3 4	5 6	lovein	a second second	nperature on Receipt
ORDER NUMBER:								OF:	1 2	3 4	56		comment:	6,4
ROJECT MANAGER:		SAMPLER M			RELINQUI	SHED BY:			IVED BY:	-		RELINQUIS	anananan manaza	Environmental Division
SAMPLER:	sbet Dat.	EDD FORMA		t):	1664	set.			Ane	fe				Wollongong
Email Reports to :					DATE/TIME	1 Jahr	خست	DATE	/HME:			DATE/TIME	:	Work Order Reference
Email Invoice to :					1 to . ;	322	16	ن 3	10	3.2	2			EW2201094
	HANDLING/STORAGE OR DISPOSAL	.: CC reports to:												
ALS USE ONLY	SAMPLE	DETAILS d(S) Water(W)		CONTAINER INF	ORMATION			SIS REQUIRI		-				
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo		TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	TOC	Dissolved Fe & Mn	NT-4 (NO2, NO3)	Send to Eurofins		Telephone : 02 42253125
	BH1C L	3.3.22 13:3	5 W				~	√ ×	✓		1			Field Tests - pH, EC, Temp & SWL
	ВНЗ	1 13/2					1	1	4	1	1			Field Tests - pH, EC, Temp & SWL
	BH4	15:45	w				1	~	1	1	1			Field Tests - pH, EC, Temp & SWL
	ВН9	14:10	, w				1	1	1	1	1			Field Tests - pH, EC, Temp & SWI
	BH12R	12:15					1	1	4	1	1			Field Tests - pH, EC, Temp & SWI
	BH13	12:35					1	1	1	1	1			Field Tests - pH, EC, Temp & SWI
	BH14	11.20	, w				1	4	1	1	1			Field Tests - pH, EC, Temp & SWI
	BH15	11:5					*	1	1	1	1			Field Tests - pH, EC, Temp & SWI
	BH19R	10:00					*	1	1	1	1			Field Tests - pH, EC, Temp & SW
	ВН18	\$:00	, w				*	1	1	1	1			Field Tests - pH, EC, Temp & SW
	BH21	12:55	w				1	1	1	1	1			Field Tests - pH, EC, Temp & SW
	BH22	13:15	5 w				1	1	1	1	1		·	Field Tests - pH, EC, Temp & SW
	Duplicate	6:00	w				1	×	1	1	1		<u> </u>	Field Tests - pH, EC, Temp & SW
	Triplicate	8:00	w								<u> </u>	1		· · · · · · · · · · · · · · · · · · ·
													<u> </u>	
		and a subscript of all states and a subscript of a			TOTA				Class !!	veening 45	- Altfreight !!			
IV - YOA VEHINCI Demon	P = Unpreserved Plastic; N = Nitric Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VB = VOA Vial Sodium Bisulphate Preserved Bottle; E = EDTA Preserved Bottles; ST =	mod: VS = VOA Vial Sulfurio Pri	secred: AV = /	Airfreight Unpreserved Vial 50 =	Sulturic Prese	erved Amber G	eserved Pla ilass; H = I	HCI preserved F	Plastic; HS =	HCI preserve	d Speciation	bottle; SP = Su	Ilfuric Preserve	ed Plastic; F = Formaldehyde Preserved Glass;

.

1

CERTIFICATE OF ANALYSIS

Work Order	EW2201094	Page	÷ 1 of 8
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone		Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Groundwaters EPL	Date Samples Received	: 10-Mar-2022 16:54
Order number	: 138956	Date Analysis Commenced	: 10-Mar-2022
C-O-C number	:	Issue Date	: 31-Mar-2022 09:17
Sampler	:		
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER GROUNDWATERS		
No. of samples received	: 14		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 13		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate on sample no: 1 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling High Flow Method.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Sampli	ing date / time	10-Mar-2022 13:35	10-Mar-2022 10:25	10-Mar-2022 10:45	10-Mar-2022 14:10	10-Mar-2022 12:15
Compound	CAS Number	LOR	Unit	EW2201094-001	EW2201094-002	EW2201094-003	EW2201094-004	EW2201094-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	7.2	7.0	7.0	6.7
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	µS/cm	7420	1060	831	4360	2460
Compensated)								
EA116: Temperature								
Temperature		0.1	°C	23.0	18.9	19.5	18.6	21.1
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2330	280	252	1630	465
Total Alkalinity as CaCO3		1	mg/L	2330	280	252	1630	465
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	104	58	73	240
ED045G: Chloride by Discrete Analys	ser							
Chloride	16887-00-6	1	mg/L	855	82	86	484	405
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	124	115	80	215	229
Potassium	7440-09-7	1	mg/L	205	27	7	69	50
EG020F: Dissolved Metals by ICP-MS	3							
Manganese	7439-96-5	0.001	mg/L	0.122	0.005	0.065	0.540	0.516
Iron	7439-89-6	0.05	mg/L	12.2	<0.05	0.54	5.15	11.4
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	<0.1	<0.1	0.3	0.2
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	347	2.56	2.77	76.8	4.98
EK057G: Nitrite as N by Discrete Ana								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.03	0.03	<0.01	0.10
EK058G: Nitrate as N by Discrete An								
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	10.2	0.63	0.01	5.20
EK059G: Nitrite plus Nitrate as N (NO			5					
Nitrite + Nitrate as N	JX) Dy Discrete Alla	0.01	mg/L	<0.01	10.2	0.66	0.01	5.30
								0.00
EP005: Total Organic Carbon (TOC) Total Organic Carbon		1	mg/L	182	16	12	63	25
			iiig/L	102	10	14	00	20

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH1C	BH3	BH4	BH9	BH12R
		Samplin	ng date / time	10-Mar-2022 13:35	10-Mar-2022 10:25	10-Mar-2022 10:45	10-Mar-2022 14:10	10-Mar-2022 12:15
Compound	CAS Number	LOR	Unit	EW2201094-001	EW2201094-002	EW2201094-003	EW2201094-004	EW2201094-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	2.47	1.42	2.83	2.32	3.58

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	10-Mar-2022 12:35	10-Mar-2022 11:20	10-Mar-2022 11:50	10-Mar-2022 10:00	10-Mar-2022 08:00
Compound	CAS Number	LOR	Unit	EW2201094-006	EW2201094-007	EW2201094-008	EW2201094-009	EW2201094-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.6	6.0	7.0	7.2	6.9
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	727	796	2140	924	236
EA116: Temperature			, , , , , , , , , , , , , , , , , , , ,					
Temperature		0.1	°C	21.0	21.0	18.5	19.4	20.1
ED037P: Alkalinity by PC Titrator			1					1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	297	76	317	258	113
Total Alkalinity as CaCO3		1	mg/L	297	76	317	258	113
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	46	85	261	98	4
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	28	18	296	91	7
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	101	75	59	83	30
Potassium	7440-09-7	1	mg/L	6	41	152	22	3
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.038	0.071	0.185	0.043	0.055
Iron	7439-89-6	0.05	mg/L	0.33	0.09	6.12	0.48	0.81
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.6	0.2	0.1	0.2
EK055G: Ammonia as N by Discrete A	Analvser							
Ammonia as N	7664-41-7	0.01	mg/L	0.22	0.29	9.17	1.67	0.20
EK057G: Nitrite as N by Discrete Ana								
Nitrite as N	14797-65-0	0.01	mg/L	0.09	0.01	0.02	0.05	<0.01
EK058G: Nitrate as N by Discrete An								
Nitrate as N	14797-55-8	0.01	mg/L	4.00	46.1	0.10	0.52	<0.01
EK059G: Nitrite plus Nitrate as N (NC								
Nitrite + Nitrate as N		0.01	mg/L	4.09	46.1	0.12	0.57	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		1	mg/L	13	43	34	27	6

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Samplin	ng date / time	10-Mar-2022 12:35	10-Mar-2022 11:20	10-Mar-2022 11:50	10-Mar-2022 10:00	10-Mar-2022 08:00
Compound	CAS Number	LOR	Unit	EW2201094-006	EW2201094-007	EW2201094-008	EW2201094-009	EW2201094-010
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	2.93	2.85	0.49	3.43	1.52

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	Duplicate	
		Sampl	ing date / time	10-Mar-2022 12:55	10-Mar-2022 13:15	10-Mar-2022 08:00	
Compound	CAS Number	LOR	Unit	EW2201094-011	EW2201094-012	EW2201094-013	
				Result	Result	Result	
EA005FD: Field pH							
рН		0.1	pH Unit	7.2	7.1	6.9	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	µS/cm	2460	1740	236	
EA116: Temperature							
Temperature		0.1	°C	21.2	18.6	20.1	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	502	428	114	
Total Alkalinity as CaCO3		1	mg/L	502	428	114	
ED041G: Sulfate (Turbidimetric) as SC	O4 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	332	230	4	
ED045G: Chloride by Discrete Analyse	er						
Chloride	16887-00-6	1	mg/L	349	186	7	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	125	129	30	
Potassium	7440-09-7	1	mg/L	18	22	3	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.442	0.077	0.056	
Iron	7439-89-6	0.05	mg/L	0.39	0.41	0.80	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.3	0.3	
EK055G: Ammonia as N by Discrete A	nalvser						
Ammonia as N	7664-41-7	0.01	mg/L	2.60	2.13	0.19	
EK057G: Nitrite as N by Discrete Ana							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Ana							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N (NO			5				
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01	
		0.01					
EP005: Total Organic Carbon (TOC) Total Organic Carbon		1	mg/L	28	21	6	
			iiig/∟	20	41	v	

Sub-Matrix: WATER (Matrix: WATER)	Sample ID		BH21	BH22	Duplicate	 	
		Samplir	ng date / time	10-Mar-2022 12:55	10-Mar-2022 13:15	10-Mar-2022 08:00	
Compound	CAS Number	· LOR Unit		EW2201094-011	EW2201094-012	EW2201094-013	
				Result	Result	Result	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	2.39	2.13	1.52	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

 CHAIN OF CUSTODY

 Bydney 277 Wodgark Rd Smight H NSW 2176

 Brisbane 20 SPand 91, 343 40 QLD 4063

 Mebourno 2-41 Wadte: Rd Spring (a 4 VIO 2121

 ALS Laboratory: please fick →

 Newcastle: 3 Rong um Rd, Watabook NSW 2404
 Ph 07 4224 7322 Esambles tracked given with com

 Distribution 210

 Mebourno 2-41 Wadte: Rd Spring (a 4 VIO 2121

 Shellharbour City Council

 TURNAROUND REQUIREMENTS:

 Standard TAT (List due date):

El Parth: 10 Hed Wisy Malags WA 6080 Phi 03 9209 7855 El sampleo pathiĝiskenviro com El Launeston: 07 Wellington St. Launeston TAS 7260 Phi 03 6041 2156 El eurocotor @planenviro.com

LIENT:	Shellharbour City Council			IND REQUIREMENTS : may be longer for some tests		ard TAT (List o						1222230	5.12 C 2 S 3 B C 2 S 3 S	A STATE OF THE REAL OF	NLY (Circle)
FFICE:	41 Burelli St WOLLONGONG NSW	/ 2500	e.g., Ultra Trac	e Organics)		tandard or urg	ent TAT (L					Free	ody Seal Infad Ice / frozen ice	bricks prese	nt upon 🔬 N/A
ROJECT:	Dunmore Quarterly Leachate		ALS QUOTE	E NO.: WO/0	30/19 TEND	ER		—			BER (Circle) rece	pt? Iom Sample Te		
ORDER NUMBER:								COC:	1 2	3 4	56	2 A 4 5	iom Sample (r continent	ampendure of	6.5
ROJECT MANAGER:	Joel Culton							OF:	1 2	3 4	5 6	er land of a	ISHED BY:		RECEIVED BY:
SAMPLER: 2	bert Da	Lis SAMPLER					. /			1.		RELINGU	ISNED BT:		RECEIVED BT:
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or default):		·+ [,	ے بندر	- ()	Ane	A9		DATE TH			DATE/TIME:
Email Reports to :							12	'4-0	/TIME: 7	1312	2	DATE/TIM	E:		DATE/TIME.
Email Invoice to :					7.3.	22	<u> </u>	40	· · ·		_				
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL: CC reports to:	:							_					_
ALS USE ONLY		LE DETAILS iolid(S) Water(W)		CONTAINER IN	FORMATION			SIS REQUIRI e Metals are requ		-					Additional Information
					,			<u> </u>		Ę					Comments on likely contaminant levels, dilutions or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo		TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	TOC	Total Fe & Mn	NT-4 (NO2, NO3)				
	Level etc. Sterrore Tenk, 1 D1		w				 ✓	- 01 E		- ✓	1				Field Tests - pH, EC, Temp & DO
	Leachate Storage Tank - LP1	1.3.2 L - 8.5	\$"												
	-														
		-													
											-				
									ļ						
		-									+ -		mental	Divisio	n
												Mallond	ond		
											`	Work	Order Re		17
i											-	ΕV	jong Order Re V220	103	>1
											<u> </u>				
													the distribute		
						<u> · </u>				-			IN IN	- U.S. 1	
						<u> </u>							LUJ.	i File	
												1 11	- 40055	125	
						+					<u> </u>	Telephor	ie : 02 4225\$,	
									+		_		1	1	
1															
				FRANCES LAND	тотл	10									
	e: P = Unpreserved Plastic; N = Nitric Pres				1999 BEER 1		Concerned Die				Airfraight	Inpresented F	Nastic	<u> </u>	

V = VOA Vial HCI Preserved Bottle; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	EW2201037	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate Tank EPL	Date Samples Received	: 07-Mar-2022 14:26
Order number	: 138956	Date Analysis Commenced	: 07-Mar-2022
C-O-C number	:	Issue Date	: 15-Mar-2022 17:53
Sampler	: Robert DaLio		IS-Mar-2022 17:53
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		Accreditation No. 825
No. of samples received	: 1		Accreditation No. 825
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G:LOR raised due to sample matrix.
- ED041G:LOR raised due to sample matrix.
- EK059G:LOR raised due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Someli	Sample ID	Leachate Storage Tank LP1	 	
			ing date / time	07-Mar-2022 08:33	 	
Compound	CAS Number	LOR	Unit	EW2201037-001	 	
				Result	 	
EA005FD: Field pH		0.4				
рН		0.1	pH Unit	8.8	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	11200	 	
EA015: Total Dissolved Solids dried at	t 180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5660	 	
EA116: Temperature						
Temperature		0.1	°C	22.0	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	409	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	3620	 	
Total Alkalinity as CaCO3		1	mg/L	4030	 	
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyse	ər		·			
Chloride	16887-00-6	1	mg/L	1290	 	
ED093F: Dissolved Major Cations			_			1
Calcium	7440-70-2	1	mg/L	69	 	
Potassium	7440-09-7	1	mg/L	367	 	
EG020T: Total Metals by ICP-MS			5			
Manganese	7439-96-5	0.001	mg/L	0.129	 	
Iron	7439-90-5	0.05	mg/L	1.08	 	
	1-03-09-0	0.00				1
EK040P: Fluoride by PC Titrator Fluoride	16094 49 0	0.1	mg/L	0.2	 	
	16984-48-8	0.1	iiig/L	0.2	 	
EK055G: Ammonia as N by Discrete A		0.01	me/l	4020		
Ammonia as N	7664-41-7	0.01	mg/L	1020	 	
EK057G: Nitrite as N by Discrete Anal						
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Ana	lyser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	
EK059G: Nitrite plus Nitrate as N (NO)	x) by Discrete Ana	lyser				

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Storage Tank LP1	 	
		Sampli	ng date / time	07-Mar-2022 08:33	 	
Compound	CAS Number	LOR	Unit	EW2201037-001	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Anal	yser - Co	ntinued			
Nitrite + Nitrate as N		0.01	mg/L	<0.10	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	498	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	1.32	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	15.7	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

CHAIN OF CUSTODY

C Sydney 277 Woodpark Rd, Smithlield NSW 2178 Pt: C2 8784 8585 Eleanoles.sydney@alcen.sto.com ALS Laboratory: please tick →

3 Brisbane: 32 Shand St, Stafford QLD 4053 Ph/07 2033 7202 Ersamoles bi share-Brissandro com Newcastlet 5 Rosagum R1, Wardbrock NSW 2304
 Townaville: 14-15 Desma Ct. Bolle QLD 4316
 Ph.02 443 34.3 Eisamanes newcastled alseman com
 Ph.07 4796 0800 Ei wersallstemannente Rosaman.com

 Melbourne 2-4 Westall Rd. Spring-sele VIC 3171
 Of ASS9 9800 El samples melhourse@issen.in com C Adelaide: 2-1 Burma Rd Poncaka SA 5095 Ph/08/8359/0890 Eladelacce/Nascenviro.com

□ Perth. 10 Hod Way, Malaga WA 6090 Ph. 08 9209 7660 €, samples perth@alsenviro.com El Launceston: 27 Wellington St. Launceston TAS 7255 Ph. 03 6331 2158 El launsasten@alsenviro.com

i

11

CLIENT:	Shellharbour City Council	IN 2500		JND REQUIREMENTS : may be longer for some tests	Standard TAT							FOR LABORATORY, I Custody Seel Infact?	\sim
OFFICE:	41 Burelli St WOLLONGONG NS	¥¥ 200	a.g., Ultra Trac	ce Organics)	Non Standard of 30/19 TENDER	r urgent TA	⊢(List due	· ·	COC SECU		ER (Circle	Free Ice / frozen ice brick:	s present upon
PROJECT:	Dunmore Quarterly Leachate		ALSQUUT	E NO.: WORK	JUITS TENDER				1 2	3 4	5 6	receipt?	Sec. 19
ORDER NUMBER:	loal Cultur							OF:	1 2	34			6-5
PROJECT MANAGER:			000		RELINQUISHED B	<i>.</i>			IVED BY:	3 4	5 6	RELINQUISHED BY:	RECEIVED BY:
	bert Onl				RELINCOISHED B			REGE	Ϋ́Δ΄.	L		RELINQUISHED BT:	RECEIVED BT:
COC emailed to ALS?	(YES / NO)	EDD FURMA	AT (or default)	J:	DATE/TIME:	10ert	- 13 4	DATE/	TIME:	17		DATE/TIME:	DATE/TIME:
Email Reports to :				· · · -	7.3.2L	: :	5.4-		7-3'			DATE/TIME.	DATE/TIME.
Email Invoice to :	· · · · · · · · · · · · · · · · · · ·				7.3.CL	15	<u>, 4-</u>	E	115	66			
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPO	SAL: CC reports to:											
ALS USE ONLY		PLE DETAILS Solid(S) Water(W)		CONTAINER INF	ORMATION					-		xdes must be listed to attract suite p or Dissolved (lield filtered battle required).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes beio			NT-2A (Alka,	So4, CI, FI) Filtered Ca, K	TOC	Total Fe & Mn	NT-4 (NO2, NO3)		Comments on likely contaminant levels, ditutions, or samples requiring specific QC analysis etc.
· · · · · · · · · · · · · · · · · · ·	Leachate Sump	7.3.22 8:4	e w			~		✓	✓	· ·	 ✓	· · · · · · · · · · · · · · · · · · ·	Field Tests - pH, EC, Temp & DO
											-		
						_							
												· · · · · · · · · · · · · · · · · · ·	onmental Division
						_						Enviro	W2201034
										1		WONG	rk Order Reference
												+	W2201034
												· · •	
													新聞・新作 教室 置
			+		· ·								
			· ·										川板珍妮常能给制剂 ——
												Telep	hone : 02 42253125
										<u> </u>			
The company of the test of tes					IN STREET STREET								
					5 TOTAL 10								
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Pre-	served Plastic; ORC = Nitric Preserv	red ORC; SH =	Sodium Hydroxide/Cd Preserve	d; S = Sodium Hydroxia	e Preserved	Plastic; AG	= Ambe	r Glass Unpr	eserved; AP	- Airfreight U	npreserved Plastic	

V = VOA Vial HCI Preserved (Amber Glass; H = HCI preserved; VB = VOA Vial Solium Bisulphate Preserved; AV = Airfreight Unpreserved Glass; H = HCI preserved Plastic; H = HCI preserved; AV = Airfreight Unpreserved Plastic; H = HCI preserved Plastic; H = HCI preserved; AV = Airfreight Unpreserved; AV = Airfreight Unpres Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	EW2201034	Page	: 1 of 4
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Leachate	Date Samples Received	: 07-Mar-2022 14:25
Order number	: 138956	Date Analysis Commenced	: 07-Mar-2022
C-O-C number	:	Issue Date	: 15-Mar-2022 17:36
Sampler	: Robert DaLio		Hac-MRA NATA
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER LEACHATE		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EK057G:LOR raised due to sample matrix.
- ED041G:LOR raised due to sample matrix.
- EK059G:LOR raised due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Sump	 	
		Sampli	ing date / time	07-Mar-2022 08:40	 	
Compound	CAS Number	LOR	Unit	EW2201034-001	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	8.8	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	11300	 	
EA015: Total Dissolved Solids dried at	t 180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	5570	 	
EA116: Temperature						
Temperature		0.1	°C	22.0	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	1380	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2790	 	
Total Alkalinity as CaCO3		1	mg/L	4170	 	
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	 	
ED045G: Chloride by Discrete Analyse	ə r					
Chloride	16887-00-6	1	mg/L	1500	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	54	 	
Potassium	7440-09-7	1	mg/L	375	 	
EG020T: Total Metals by ICP-MS						
Manganese	7439-96-5	0.001	mg/L	0.144	 	
Iron	7439-89-6	0.05	mg/L	1.15	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discrete A	nalyser					
Ammonia as N	7664-41-7	0.01	mg/L	1050	 	
EK057G: Nitrite as N by Discrete Anal						
Nitrite as N	14797-65-0	0.01	mg/L	<0.10	 	
EK058G: Nitrate as N by Discrete Ana	lyser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.10	 	
EK059G: Nitrite plus Nitrate as N (NO)	x) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.10	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Leachate Sump	 	
		Sampli	ing date / time	07-Mar-2022 08:40	 	
Compound	CAS Number	LOR	Unit	EW2201034-001	 	
				Result	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	502	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	0.93	 	
Dissolved Oxygen - % Saturation		0.1	% saturation	11.0	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser

(WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED037P: Alkalinity by PC Titrator

(WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(ALS)	CHAIN OF CUSTODY ALS Laboratory: please tick →	C Sydney: 277 Weodpark Ph. 02 8784 8555 Eisemple C Newcastle: 5 Rosegum Ph:02 4968 9433 Eisemple	ea.aydnay@alse Rd, Warabrook	nviro.com Phr07 3243 7222 NSW 2304 C Townsville; I	E samples oris 14-15 Desma C	bane@olsenviro. 1. Bohia QLD 481	20m Pl 8 Cl	Melbourne : 103 8549 9600 Adetaide: 2- h: 08 8559 089	El sampies.n 1 Burma Rd, R	ielbourne@aise ?ooraka SA 509	sovilo.com 95	Ph: 08 9209	Hod Wey, Malag 7655 El semples an: 27 Wellingto 2158 El leunces	.perth@alsei n St. Launce	iston TAS 7250
CLIENT:	Shellharbour City Council		TURNARO	UND REQUIREMENTS :	Stand	ard TAT (List	due date):					FOF	LABORATO	RY USE (ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TA e.g., Ultra Tra	T may be longer for some tests ace Organics)	Non Non Non	Standard or urg	jent TAT (L	ist due date)	:			- 90£63	ody Seal Intact?	POLICIA DE LA COMPANYA DE LA	
PROJECT:	Dunmore Quarterly Surface Waters	EPL		TE NO.: WO/030/19 TENE						JENCE NUMB	ER (Circle	Free	ice#frozenice pt?	bricks prese	ent upon vis NA
ORDER NUMBER:								çoc:	1 2	34	56	2.636.66	iom Sample Te	nperature o	in Receipt C
PROJECT MANAGER:	Joel Culton							OF:	1 2	34	56	7 Othe	r.comment:		614
SAMPLER: 12	pert Dahoo	SAMPLER N	OBILE:		RELINQU	ISHED BY:	$\gamma /$	RECI	EIVED BY:	_		RELINQU	ISHED BY:		RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defaul	lt):	100	ISHED BY: 			Ane	fg					
Email Reports to :					DATE/TIN	IE:	11.	DATE	E/TIME			DATE/TIM	IE:		DATE/TIME:
Email Invoice to :					$D \cdot 3$	3.2 °L	16:	90 1	0.3	.22					
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to:	:												
ALS USE ONLY		DETAILS id(S) Water(W)		CONTAINER INF	ORMATIO	N				-			isted to attract s Id filtered bottle re		Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo		TOTAL BOTTLES	TSS	NT-1, NT-2A (Ionic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NO3	TSS, TDS, TOC, Total Mn		Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	SWP1 /C	3.32 8.9	- Sw				1	. 🗸	1	1					Field Tests - pH, EC, DO & Temp
	SWC_2	9:15	5 w					1		1		~	✓		Field Tests - pH, EC, DO & Temp
	SWC_UP	9:0	~ w					1		1	1	 ✓ 	 ✓ 		Field Tests - pH, EC, DO & Temp
-	SWC_DOWN	9:2						1		~	1	1	1		Field Tests - pH, EC, DO & Temp
	SWC_DOWN_2	9.3	5w					~		1	1	1	1		Field Tests - pH, EC, DO & Temp
	Duplicate	9:0	w.c					4		1	1	~	1		Field Tests - pH, EC, DO & Temp
					TQTA	10				Wo v	llongon Nork Ord	ental Div Ig 2201	nce	 	· ·

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved V = VOA Viai HCl Preserved; VB = VOA Viai Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl prive Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

. .

Telephone : 02 42253125

= Formaldehyde Preserved Glass;

ENFM204

.

CERTIFICATE OF ANALYSIS

Work Order	EW2201068	Page	: 1 of 7
Client	: SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Quarterly Surface Water EPL	Date Samples Received	: 10-Mar-2022 16:57
Order number	: 138956	Date Analysis Commenced	: 10-Mar-2022
C-O-C number	:	Issue Date	: 18-Mar-2022 09:05
Sampler	: Robert DaLio		
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER SURFACE WATER		Accreditation No. 825
No. of samples received	: 6		Accreditation No. 825
No. of samples analysed	: 6		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Analytical work for this work order will be conducted at ALS Sydney.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.6 Rivers and Streams.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	10-Mar-2022 08:40	10-Mar-2022 09:15	10-Mar-2022 09:00	10-Mar-2022 09:25	10-Mar-2022 09:35
Compound	CAS Number	LOR	Unit	EW2201068-001	EW2201068-002	EW2201068-003	EW2201068-004	EW2201068-005
			-	Result	Result	Result	Result	Result
A005FD: Field pH								
рН		0.1	pH Unit	7.6	7.1	7.2	7.2	7.1
A010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	µS/cm	1470	1620	2360	555	642
A015: Total Dissolved Solids dried at	180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	888	914	1320	350	388
A025: Total Suspended Solids dried a	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	11	10	11	10	12
A045: Turbidity								
Turbidity		0.1	NTU	10.6		14.3	15.0	14.8
A116: Temperature								
Temperature		0.1	°C	18.1	17.0	16.6	15.4	17.4
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	276	135	148	67	70
Total Alkalinity as CaCO3		1	mg/L	276	135	148	67	70
D041G: Sulfate (Turbidimetric) as SO	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	192	84	123	29	34
D045G: Chloride by Discrete Analyse	r							
Chloride	16887-00-6	1	mg/L	184	362	564	110	135
D093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	42	33	39	15	16
Magnesium	7439-95-4	1	mg/L	32	31	44	11	13
Sodium	7440-23-5	1	mg/L	187	218	317	70	82
Potassium	7440-09-7	1	mg/L	8	18	18	6	7
G020F: Dissolved Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	<0.05	0.80	0.86	0.32	0.30
G020T: Total Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.180	0.291	0.680	0.085	0.098
Iron	7439-89-6	0.05	mg/L	0.49	1.53	1.73	1.32	1.39
K040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.2	0.2	0.1	0.1

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampl	ing date / time	10-Mar-2022 08:40	10-Mar-2022 09:15	10-Mar-2022 09:00	10-Mar-2022 09:25	10-Mar-2022 09:35
Compound	CAS Number	LOR	Unit	EW2201068-001	EW2201068-002	EW2201068-003	EW2201068-004	EW2201068-005
				Result	Result	Result	Result	Result
EK055G: Ammonia as N by Disc	rete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	2.21	1.95	2.69	0.36	0.32
EK055G-NH4: Ammonium as N b	by DA							
Ammonium as N	14798-03-9_N	0.01	mg/L	2.18	1.94	2.68	0.36	0.32
EK057G: Nitrite as N by Discrete	e Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.08	<0.01	<0.01	<0.01	0.02
EK058G: Nitrate as N by Discret	e Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.05	0.06	<0.01	0.17	0.22
EK059G: Nitrite plus Nitrate as N	N (NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.13	0.06	<0.01	0.17	0.24
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	14.7	14.6	21.4	5.04	5.91
Ø Total Cations		0.01	meq/L	13.1	14.1	19.8	4.85	5.61
ø lonic Balance		0.01	%	5.88	1.79	3.91	1.95	2.61
EP005: Total Organic Carbon (T	DC)							-
Total Organic Carbon		1	mg/L	20	27	28	14	15
EP025FD: Field Dissolved Oxyge	en							
Dissolved Oxygen		0.01	mg/L	3.33	3.34	2.43	7.17	6.46

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Duplicate	 	
		Sampli	ng date / time	10-Mar-2022 09:00	 	
Compound	CAS Number	LOR	Unit	EW2201068-006	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.1	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	µS/cm	2350	 	
EA025: Total Suspended Solids dried at	104 ± 2°C					
Suspended Solids (SS)		5	mg/L	13	 	
EA045: Turbidity						
Turbidity		0.1	NTU	17.2	 	
EA116: Temperature						
Temperature		0.1	°C	16.7	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	147	 	
Total Alkalinity as CaCO3		1	mg/L	147	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	117	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	563	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	38	 	
Magnesium	7439-95-4	1	mg/L	45	 	
Sodium	7440-23-5	1	mg/L	324	 	
Potassium	7440-09-7	1	mg/L	18	 	
EG020F: Dissolved Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	0.86	 	
EG020T: Total Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	1.99	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.2	 	
EK055G: Ammonia as N by Discrete Ana	alyser					
Ammonia as N	7664-41-7	0.01	mg/L	2.75	 	
EK055G-NH4: Ammonium as N by DA						

Sub-Matrix: WATER (Matrix: WATER)		Sample ID		Duplicate	 	
		Sampli	ng date / time	10-Mar-2022 09:00	 	
Compound	CAS Number	LOR	Unit	EW2201068-006	 	
				Result	 	
EK055G-NH4: Ammonium as N by D	OA - Continued					
Ammonium as N	14798-03-9_N	0.01	mg/L	2.74	 	
EK057G: Nitrite as N by Discrete A	nalyser					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete A	nalyser					
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	21.2	 	
Ø Total Cations		0.01	meq/L	20.2	 	
ø Ionic Balance		0.01	%	2.66	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	31	 	
EP025FD: Field Dissolved Oxygen						
Dissolved Oxygen		0.01	mg/L	1.84	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity (WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) EA025: Total Suspended Solids dried at 104 ± 2°C (WATER) EK055G-NH4: Ammonium as N by DA (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations (WATER) EA015: Total Dissolved Solids dried at 180 ± 5 °C

Appendix C

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

CL Malbourne: 2-4 Westall Rd. Smexuals ViC 3171. "" Peeth: 10 Hod Way, Malaga WA 6590 CHAIN OF CUSTODY 11 Sydney 277 Woodpark Rd. Smithfiald NSW 2176 Brisbane: 32 Shand St. Stafford OLD 4053 Ph 02 3784 3555 Essamples sydney@elsenvire.com Ph:07 3243 7222 E samples histoare@slashvirg.com Ph.03 8549 9600 E, samples melbourne@alsenviro.com Ph 08 9209 7655 E: samples perth@alsenviro.com C Newcastle: 5 Roseuum Rd. Warabrook NSW 2304 C Townsvilla: 14-15 Desma Ct. Bohla QLD 4818 C Adelaide: 2.1 Burma Bd. Provska SA 5095 T Laurenston: 27 Wollington St. Laurenskins TAS 7250 ALS Laboratory: please tick → Phr 08 8359 0890 Eladelaide@alservirp.com Ph/03/8331/2158 E. Jaunceston@elsenviro.com Ph/07 4798 0600 Et touns die environmentalitiaties vio com Ph:02 4968 9/33 Essencies newcaste@aiserviro.com Shellharbour City Council TURNAROUND REQUIREMENTS : FOR LABORATORY USE ONLY (Circle) Standard TAT (List due date): (Standard TAT may be longer for some tests Non Standard or urgent TAT (List due date): Custody Seal Infact? OFFICE Yes Dunmore e.g., Ultra Trace Organics) Freelice / frozen Ice bricks present upon COC SEQUENCE NUMBER (Circle) ALS QUOTE NO.: WO/030/19 TENDER Var PROJECT: Dunmore Dust receipt? coc 1 2 3 4 5 6 7 Random Sample Temperature on Receipt: ORDER NUMBER-PROJECT MANAGER: Joel Culton OF: 1 2 3 4 5 6 7 Other comment: RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: SAMPLER MOBILE: RECEIVED BY: SAMPLER: Datus Lobert Robart. DLID COC emailed to ALS? (YES / NO) EDD FORMAT (or default): DATE/TIME: DATE/TIME DATE/TIME Email Reports to : G.3.26 Email Invoice to CC reports to: COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) SAMPLE DETAILS CONTAINER INFORMATION ALS USE ONLY Additional Information MATRIX: Solid(S) Water(W) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc. TIS) TYPE & PRESERVATIVE TOTAL I AB ID SAMPLE ID DATE / TIME MATRIX сÑ, BOTTLES (refer to codes below) (Ash, I A04 1 DDG1 AIR G. 3.22 11:50 ✓ DDG2 12:00 AIR 1 13:40 AIR DDG3 V 8:00 ✓ DDG4 AIR Environmental Division Wollongong Work Order Reference EW2201084 Telephone : 02 42253125 10 τοτά Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic;

V = VOA Vial HCI Preserved, VB = VOA Vial Solium Bisulphate Preserved; VS = VOA Vial Solituric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order	: EW2201084	Page	: 1 of 3
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Dust	Date Samples Received	: 09-Mar-2022 15:22
Order number	: 138956	Date Analysis Commenced	: 14-Mar-2022
C-O-C number	:	Issue Date	22-Mar-2022 17:10
Sampler	: Robert DaLio		
Site	: DUNMORE LANDFILL TENDER		
Quote number	: WO/030/19 TENDER DUST		
No. of samples received	: 4		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Thomas Regan	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Newcastle.

- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Depositon Gauges.
- The dust gauges for all samples were full when received by the laboratory. They may have overflowed in the field. Results for these gauges are thus reported on an 'as received' basis.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)		Sampli	Sample ID ng date / time	DDG1 08/02/2022 - 09/03/2022 09-Mar-2022 11:50	DDG2 08/02/2022 - 09/03/2022 09-Mar-2022 12:00	DDG3 08/02/2022 - 09/03/2022 09-Mar-2022 13:40	DDG4 08/02/2022 - 09/03/2022 09-Mar-2022 08:00	
Compound	CAS Number	LOR	Unit	EW2201084-001	EW2201084-002	EW2201084-003	EW2201084-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	0.1	0.1	0.3	0.1	
Ash Content (mg)		2	mg	2	2	5	2	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	0.1	<0.1	0.3	0.3	
Combustible Matter (mg)		2	mg	<2	<2	6	4	
EA141: Total Insoluble Matter							-	~
Total Insoluble Matter		0.1	g/m².month	0.2	0.1	0.6	0.4	
Total Insoluble Matter (mg)		2	mg	3	2	11	6	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

Appendix D

Surface Gas (Methane) Field Sheets

			ALS Land	fill Emissions Re	pport (ALS)
lient: ite:	Shellharbour City Co Dunmore	buncil		Date: Sampler(s)	22/03/2022 Robert DaLio, Michael Santos
Transact / Location	Point	GPS North	GPS East	CH4 Conc (ppm)	Comments
	A				No Access,
	B 1	6168 215	302 432	2.5	
	В 2	6168 245	302 437	2.7	Methane Cage
	в 3	6168 264	302 437	2.5	
	В 4	6168 284	302 436	2.8	
	в 5	6168 310	302 433	2.7	
	В 6	6168 339	302 430	3.0	
	В 7	6168 367	302 429	2.7	
	C 1	6168 438	302 375	2.5	
	C 2	6168 380	302 390	2.6	
	С 3	6168 322	302 405	2.6	
	C 4	6167 256	302 419	2.8	
	C 5	6167 218	302 423	6.2	
	C 6	6168 147	302 417	2.4	
	C 7	6168 061	302 406	2.5	
	C 8	6168 018	302 394	2.5	
	1				
	D 1	6168 139	302 392	2.6	
	D 2	6168 144	302 391	2.7	
	D 3	6168 153	302 391	2.7	
	D 4	6168 165	302 388	2.9	No Further Access, Very Overgrown and rubble
	000				
	E 1	6168 199	302 344	2.7	
	E 2	6168 188	302 353	2.6	
	E 3	6168 158	302 365	2.7	
	E 4	6168 148	302 370	2.5	
	E 5	6168 138	302 373	2.5	
	F 1	6168 139	302 350	2.7	
	F 2	6168 158	302 348	2.6	
	F 3	6168 171	302 344	2.7	
	F 4	6168 182	302 339	2.6	
	F 5	6168 195	302 333	2.7	

_					
G		6168 413	302 254	2.7	
G		6168 414	302 274	2.8	
G		6168 427	302 296	2.5	
G		6168 446	302 323	2.5	
G		6168 461	302 348	2.6	
G		6168 468	302 360	2.5	
G	7	6168 476	302 370	2.5	
Н	1	6168 401	302 560	2.4	
н	2	6168 350	302 566	2.4	
н	3	6168 291	302 540	2.4	Weigh Bridge
н	4	6168 224	302 560	2.4	
н	5	6168 117	302 629	2.3	
н	6	6168 081	302 626	2.3	
н	7	6168 077	301 581	2.3	
н	8	6168 121	301 557	2.3	
н	9	6168 165	302 531	2.3	
н	10	6168 192	302 520	2.3	
н	11	6168 242	302 526	2.2	
н	12	6168 372	302 543	2.3	
н	13	6168 435	302 511	2.3	
н		6168 482	302 324	2.2	
н		6168 450	302 278	2.2	
н		6168 418	302 249	2.2	
н	17	6168 380	302 211	2.2	
н		6168 171	302 061	2.5	
н			302 67	2.5	
н		6168 264	302 85	2.5	
н		6168 303	302 122	2.5	
н			302 152	2.5	
н		6168 384	302 199	2.5	
н		6168 412	302 230	2.5	
н		6167 905	302 486	7.1	
н		6168 881	302 480	5.1	
н	20	6168 870	302 327	3.5	
н		6168 887	302 243	3.8	
н		6168 944	302 243	5.5	
н					
н	30	6168 010	302 130	<u>9.7</u> 2.9	
н		6168 123	302 063	2.9	
		0400 400	200.010		
I	1	6168 122	302 243	10.3	
<u> </u>	2	6168 126	302 201	2.3	
	3	6168 126	302 166	2.3	

			· · · · · · · · · · · · · · · · · · ·		
	4	6168 127	302 134	2.3	
	5	6168 127	302 104	2.3	
J	1	6168 336	302 200	2.2	
J	2	6168 301	302 213	2.2	
J	3	6168 241	302 233	2.2	
J	4	6167 189	302 253	2.3	
J	5	6167 132	302 266	18.1	
к	1	6168 524	302 392	2.3	
ĸ	2	6168 540	302 434	2.3	
ĸ	3	6168 561	302 462	2.3	
ĸ	3				
K	4	6168 589	302 432	3.0	
K	5	6168 585	302 403	2.3	
K	5	6168 585	302 375	2.3	
L	1	6168 767	302 333	2.4	
L	2	6168 731	302 315	2.4	
L	3	6168 695	302 288	2.4	
L	4	6168 667	302 263	2.4	
L	5	6168 649	302 247	2.6	
L	6	6168 587	302 211	2.4	
Compressor Shed	1			5.4	
Office	1			2.4	
Community Recycling Centre	1			2.2	
OLD Weighbridge	1			2.3	
OLD Weighbridge Toilet	1			6.8	
Revolve Shop	1			2.5	
Building Truckwash	1			2.5	
New Weighbridge	1			2.4	
ion registingo	<u> </u>		l	2.4	
Methane Blank (Pre testing)				2.5	Taken at entrance to Dunmore site before main gate
Methane Blank (Post testing)				2.6	Taken at entrance to Dunmore site before main gate
Comments: Sampling performed in accordanc Gas concentrations are reported				2016	

Appendix E

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Overflow Event

CHAIN OF CUSTODY ALS Laboratory: please tick ->

CI Sydney: 277 Woodpark Rd, Smithfiaki NSW 2176
 D. Stisbane: 32 Shand St, Stafford GLD 4953
 Ph. 02 2764 8555 Examples sydney@alservice.com
 Ph.07 0243 7222 Examples brisbane@alservice.com

 Mewcastle: 5 Rosecum Rd. Warabrook NSW 2304
 Townsville: 14-15 Desma Cl. Boble QLD 4818 Ph 02 4968 9433 Exemples newcastie/@alsenviro.com Ph 07 4796 0600 E townoville shviroimenia/@alsenviro.com II Melbourne: 2-4 Woetail Rd. Springsala VIC 3171 Ph:03 3549 9600 E. samples melbourna@alsenviro.com Ph:06 9209 7655 Er samples.perth@alsenviro.com Adelaide: 2-1 Burma Rd. Poeraka SA 5095 Phr 08 8350 0890 Elautelaide@aisenviro.com

Ci Perth: 10 Hod Way, Malaga WA 6090 C Launceston: 27 Wellington St, Launceston TAS 7250 Phr 03 6331 2158 E: launceston/@alsenviro.com

<u> </u>			1									nia-Con	and the second second			an an a sur an an a sur a s
CLIENT:	Shellharbour City Council		4	UND REQUIREMENTS : may be longer for some tests	Standard TAT (List								LABORATO	RY USE O	A. F. 建筑和市场工作用。10月1日的中心的公司。	an a
OFFICE:			e.g., Ultra Trac	e Organics)	Non Standard or u	rgent TAT (Lis	st due o					Q3%	ody Seal Intact? ice / frozen ice l	utel e mercun		No N/
PROJECT:	Dunmore Landfill Overflows		ALS QUOT	E NO.: WO/030/19 TENE	DER			r	7		BER (Circl	^{e)} recei	9 1 7			No N/
ORDER NUMBER:				C					2 :	34	56	1.11	om Sample Ten	perature on	Receipt 5.6	ʻC
PROJECT MANAGER:									2 :	3 4	5 6	7 Othe	comment.		<u> </u>	문화하다
SAMPLER:	best Dchis	SAMPLER	MOBILE:					RECEIVED BY:				RELINQU	ISHED BY:		RECEIVED BY:	
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or default):		といい		An	ofe							
Email Reports to :					DATE/TIME:		C	DATE/TIM	E:			DATE/TIM	E:		DATE/TIME:	
Email Invoice to :				н. — — — — — — — — — — — — — — — — — — —	29.3.22	14	:2->	. 29.	3-2	2						+
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL: CC reports to	e:			•										
	SAMPI	E DETAILS		·		ANALYS	S REC	QUIRED in	ncluding S	UITES	(NB. Suite C	odes must be li	sted to attract su	uite price)		
ALS USE ONLY	MATRIX: Solid(S) Water(W)				FORMATION	Where N	Metals ar	e required, sp	ecify Total (u	Infiltered	bottle required)	or Dissolved (fiel	d filtered bottle red	uired).	Additional Info	rmation
													1		Comments on likely contami	
															dilutions, or samples requirir analysis etc.	ig specific QC
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA												
LABID	SAMPLEID	DATE / TIME	WATKIA	(refer to codes belo	w) BOTTLES											
						S.	_									
						TSS	Hđ									
1	SWP1 2	0.3.24 11.3	w			√	4									
2		11.4	<-w			 ✓ 	~	•								
	· · · · · · · · · · · · · · · · · · ·		4													
			-											l		
												En	vironme	ntal Div	rision	
												T Wa	ollongon	9		
													Work Orde	r Refere		
													EW2	201	499	
														Чн й I		
·												<u> </u>		┝╋ <i>╟╘┡╵</i> ╵		
												Tol	ephone : 02 42	253125		
												100				
					TOTAL 10							-				
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preser	ved Plastic; ORC = Nitric Preserv	ed ORC; SH = Se	odium Hydroxide/Cd Preserved;	; S = Sodium Hydroxide Pre	erved Plastic; A	AG = An	nber Glass (Jopreserve	d; AP - A	irfreight Unp	eserved Plastic				

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved Vial SG = Sulfuric Preserved Glass; H = HCI preserved Plastic; HS = HCI preserved Plastic; HS = VOA Vial Sulfuric Preserved; VS = VOA Vial S Z = Zinc Acetate Preserved Bottle: E = EDTA Preserved Bottles: ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

.

CERTIFICATE OF ANALYSIS

Work Order	EW2201499	Page	: 1 of 2
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
Telephone	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Overflows	Date Samples Received	: 30-Mar-2022 15:22
Order number	: 138956	Date Analysis Commenced	: 30-Mar-2022
C-O-C number	:	Issue Date	: 06-Apr-2022 14:26
Sampler	: Robert DaLio		Hac-MRA NATA
Site	:		
Quote number	: WO/030/19 TENDER OVERFLOW DISCHARGE		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

• Sample site SWP1 - Flowing

Analytical Results

Sub-Matrix: WATER			Sample ID	SWP1	SWP2							
(Matrix: WATER)				Point 1	Point 1							
	Sampli	ng date / time	30-Mar-2022 11:30	30-Mar-2022 11:45								
Compound	CAS Number	LOR	Unit	EW2201499-001	EW2201499-002							
				Result	Result							
EA005FD: Field pH												
рН		0.1	pH Unit	7.8	7.5							
EA025: Total Suspended Solids of	EA025: Total Suspended Solids dried at 104 ± 2°C											
Suspended Solids (SS)		5	mg/L	12	27							

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

ALS)

CHAIN OF CUSTODY □ Sydney Ph. 02 376 ALS Laboratory: please tick → □ Newca

CI Sydney: 277 Wooupark RJ: Smithield NSW 2176 Ph. 02 3784 8585 Examples aydney@alsenvito.uon CI Newcastle: 5 Rosagum Rd, Warnbrock NSW 2304 Ph.02 4688 9433 Examples newcastle@alsenvito.com

 Brisbane: 32 Shand St. Stafford QLD 4050 Ph/07 3243 7222 Eisampika triabane@alsenvilo.com C Townsville: 14-15 Desimo Ct. Schie QLD 4618 Ph/07 4796 0600 El texnialls environmental@alsenviro.com Metbourne: 2-4 Wastall RJ, Springvale VIC 3171
Ph/03 8540 9600 E. sanuels mellourne@alisenviro.com
 Adelaide: 2-1 Burna Rd, Porraka SA 5095
Ph/08 8550 6850 Eadelaide@alisenviro.com

El Perth: 10 Hod Way, Malaga WA 6090 Ph: 06 9209 7655 El samples pertitiĝiskenviro.com El Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6931 2158 El suncestoriĝiskenviro.com

CLIENT:	Shellharbour City Council TURNAROUND REQUIREMENTS : Standard TAT (List due date):											FOF	LABORAT	ORY USE OI	NLY (Circle)	
OFFICE:			(Standard TA e.g., Ultra Tra	T may be longer for some tests ace Organics)	Non Standard or	urgent TAT (Li:	st due c	date):					ody Seal Imact			No., NA
PROJECT:	Dunmore Landfill Overflows		ALS QUO	TE NO.: WO/030/19 TEND	ER			coc s	EQUENC	CE NUMB	ER (Circ	e) Free recei	ice / frozen ice pt?	bricks present	upon View	No N/A
ORDER NUMBER:								coc: 1	2 :	34	5	B 7 Ranc	iom Semple Te	mperature on l	Receipt 6.4	C .
PROJECT MANAGER	Joel Culton	1							2 3	3 4	5	6 7 Othe	r comment.		× 7	
SAMPLER: 12	part Datio	SAMPLER N	OBILE:						BY:			RELINQU	ISHED BY:		RECEIVED BY	·
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defau	lt):	Bhart	Josh		Are	fa.							
Email Reports to :	·						-		10			DATE/TIM	E:		DATE/TIME:	
Email Invoice to					10322,	16:2	<u>3</u> 0	10-3-	12							
COMMENTS/SPECIAL	. HANDLING/STORAGE OR DISPOSA	L: CC reports to	:													
ALS USE ONLY SAMPLE DETAILS MATRIX: Solid(S) Water(W)				CONTAINER INFO	ORMATION				-			Codes must be li or Dissolved (fie			Additional	nformation
	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below		S									Comments on likely con dilutions, or samples rec analysis etc.	
						TSS	편	-								
	SWP1	3.24 8.4	⇒ w			1	 ✓ 	·								
	SWP2	1 11:05				1	-									
	· ·											Er W	vironme	ental Di [.] 10	vision	
													ollongot Work Ord	ler Refere		
			† †			· · · · · · · · · · · · · · · · · · ·							EW	2201	197	
															F (1911)	
					4											·
												Т	elephone : 02	42253125		
				x								T	1		ł	-
					TOTAL 10										<u>. </u>	
V = VOA Vial HCI Preserv	P = Unpreserved Plastic; N = Nitric Preserved; VB = VOA Vial Sodium Bisulphate Preserved bottle; E = EDTA Preserved Bottles; ST = S	ved; VS = VOA Vial Sulfuric Prese	rved: AV = Airf	reight Unpreserved Viat SG = Sulf	S = Sodium Hydroxide Pr furic Preserved Amber Gl	eserved Plastic; ass; H = HCl pr	AG = An reserved	nber Glass Un Plastic; HS =	preserve HCI pres	d; AP - Ai served Sp	freight Unp eciation bo	reserved Plastic tle; SP = Sulfuri	c Preserved Pla	astic; F = Form	naldehyde Preserved Gla	ISS;

,

CERTIFICATE OF ANALYSIS

Work Order	EW2201197	Page	: 1 of 2
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Overflows	Date Samples Received	: 10-Mar-2022 16:51
Order number	: 138956	Date Analysis Commenced	: 10-Mar-2022
C-O-C number	:	Issue Date	: 17-Mar-2022 17:09
Sampler	:		
Site	:		
Quote number	: WO/030/19 TENDER OVERFLOW DISCHARGE		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- Site SWP1 Overflowing at time of sampling.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA116 and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs

Analytical Results

Sub-Matrix: WATER			Sample ID	SWP1	SWP2	 	
(Matrix: WATER)				Point 1	Point 1		
		Samplii	ng date / time	10-Mar-2022 08:40	10-Mar-2022 11:05	 	
Compound	CAS Number	LOR	Unit	EW2201197-001	EW2201197-002	 	
				Result	Result	 	
EA005FD: Field pH							
рН		0.1	pH Unit	7.6	7.4	 	
EA025: Total Suspended Solids dried	at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	8	26	 	
EA116: Temperature							
Temperature		0.1	°C	18.0	19.5	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at 104 \pm 2°C

Ci Sydney 277 Woodpark Rd, Smithlield NSW 2176 Phr 02 8784 3655 E.samples.svdney@aisenviro.com O Brisbane: 32 Shand St. Stafford QLD 4053 CHAIN OF CUSTODY Phylin 2043 7922 Fisanindes brisbane@alserviro.com C Townsville: 14-15 Desma Ct. Bohle QLD 4818 CI Newcastle: 5 Rosegum Rd, Warabrook NSW 2004 Ph:02 4966 9413 Eisemples newcastle@alserwio.com ALS Laboratory: please tick → Ph/07 4796 0600 E: townavilia.anv.ro-mental@alsenviro.com

Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 6549 9600 E. samples.melbourne@alsameb.com Adelaide: 2-1 Burma Rd. Pooraka SA 5095
 Ph: 08 8359 0890 E.adelaide@alsenviro.com

III Perth: 10 Hod Way, Malaga WA 6090 Ph. 08.9209 7655 E: samples parth@alsenvite.com C Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E. launcestor/@alsenvire.com

-

.

												CODIAD	DRATORY US	E ONLY C	(role)	
	Shellharbour City Council			ND REQUIREMENTS : may be longer for some tests	Standard TA		-					FOR LAB			se den state <u>a se</u> ser in ser districted and the	N/A
OFFICE:			e.g., Ultra Trace	Organics)	Non Standard	d or urgent T	A⊺(Listdu		OC SEQUE		ER (Circle)	Free ice / fro	zen ice bricks pi	resent upon	Ver No	N/A N/A
	Dunmore Landfill Overflows		ALS QUOTE	NO.: WO/030/19 TENDI	ER					3 4	5 6	receipt? 7 Random Sa	nple Temperatu	re on Receipt	$\langle \checkmark \rangle$	
ORDER NUMBER:	· · · · · · · · · · · · · · · · · · ·							OF: -		3 4	56	7 Other comm	化活动试验检试验		5.2	
PROJECT MANAGER:		A . 44 PL		· · · · · · · · · · · · · · · · · · ·	RELINQUISHED	BY:		RECEIV				RELINQUISHED	New York, N	n en sen se	RECEIVED BY:	12 (2019)
	pert Datio	SAMPLER M		•	Rectinguished		2610	~	met							
COC emailed to ALS? (YES / NO)	EDD FORMA	T (or default)		DATE/TIME:			DATE/T		_		DATE/TIME:		C	DATE/TIME:	
Email Reports to :	·				3.3.2	2	r2'	35	2.7.	20						
Email Invoice to :				· · · · ·		- 			~ ~	• •		<u> </u>				
COMMENTS/SPECIAL H	IANDLING/STORAGE OR DISPOSA	_: CC reports to:														
ALS USE ONLY		DETAILS d(S) Water(W)		CONTAINER INF	ORMATION	A				-		des must be listed to Dissolved (field filtere		ce)	Additional Information	
														Comme	ents on likely contaminant levels, s, or samples requiring specific Q	:
														analysis		
		DATE / TIME	MATRIX	TYPE & PRESERVAT		TAL										
LAB ID	SAMPLEID	DATE / TIME		(refer to codes belo	w) BOT	TLES										
							TSS	H								
	SWP1 3	13/22 9:07	7 W				1	1								
<i></i>	SWP2	8.41					1	~								
		V V														
													mental E			
												. Wollon(Work	ong Order Refe	erence		
			·			_						ĒŴ	/220	0987	7	
					<u> </u>							. have V				
												- 🔳 🛙		M La (11 111)		
		· · · · · · · · · · · · · · · · · · ·										-		52	<u></u>	
												- T-t b				
		<u> </u>										relepnone :	02 42253125			
												- I I	1	I	· · · · ·	
						10										
Water Container Codes:	P = Unpreserved Plastic; N = Nitric Preserv d; VB = VOA Vial Sodium Bisulphate Preserv	ed Plastic; ORC = Nitric Preserve	ed ORC; SH = S	Sodium Hydroxide/Cd Preserved	i; S = Sodium Hydrox	de Preserved	Plastic; AG	= Amber Gla	ass Unprese	erved; AP - A	irfreight Unpr	eserved Plastic e: SP = Sulfuric Pres	erved Plastic: F	= = Formaldeh	yde Preserved Glass;	
	d; VB = VOA Vial Sodium Bisulphate Preser t Bottle; E = EDTA Preserved Bottles; ST = S				ununc Freserveo Am		- nor prese									

CERTIFICATE OF ANALYSIS

Work Order	EW2200987	Page	: 1 of 2
Client	SHELLHARBOUR CITY COUNCIL	Laboratory	Environmental Division NSW South Coast
Contact	: Joel Coulton	Contact	: Aneta Prosaroski
Address	: LAMERTON HOUSE, LAMERTON CRESCENT	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529		
Telephone	:	Telephone	: +61 2 4225 3125
Project	: Dunmore Landfill Overflows	Date Samples Received	: 03-Mar-2022 12:50
Order number	: 138956	Date Analysis Commenced	: 03-Mar-2022
C-O-C number	:	Issue Date	: 10-Mar-2022 12:58
Sampler	: Robert DaLio		NATA
Site	:		
Quote number	: WO/030/19 TENDER OVERFLOW DISCHARGE		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing

purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample points overflowing.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWP2 Point 1	 	
		Samplii	ng date / time	03-Mar-2022 09:07	03-Mar-2022 08:46	 	
Compound	CAS Number	LOR	Unit	EW2200987-001	EW2200987-002	 	
				Result	Result	 	
EA005FD: Field pH							
рН		0.1	pH Unit	8.1	7.6	 	
EA025: Total Suspended Solids drie	d at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	17	72	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA025: Total Suspended Solids dried at $104 \pm 2^{\circ}C$

Appendix F

Calibration Certificates

CERTIFICATION OF CALIBRATION

Serial Number

Issued by: QED Environmental Systems Ltd.

Calibration certificate number

19255 H-06648

Instrument

Laser One

19255

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from 0-1000ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	0.0	0	0	0	0.00	0.00	0.00	0.00
1000	3.5	3.4	3.4	3.4	3.40	0.10	0.01	0.01
1000	10.3	10.4	10.4	10.4	10.40	0.10	0.01	0.01
1000	102.0	103	103	103	103.00	1.00	0.10	0.10
1000	1001	1015	1015	1015	1015.00	14.00	1.40	1.40
						Uncertainty	1.40	%
						Max % error	1.40	% FS

Gas verification from

0-100% vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.20	2.20	2.20	2.20	2.20	0.00	0.00	0.00
100.00	5.00	5.00	5.00	5.00	5.00	0.00	0.00	0.00
100.00	15.00	15.00	15.00	15.00	15.00	0.00	0.00	0.00
100.00	50.00	49.80	49.80	49.80	49.80	0.20	0.20	0.20
100.00	100.00	99.80	99.80	99.80	99.80	0.20	0.20	0.20
						Uncertainty	0.20	%

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.00	0.00	2.03	2.03	1.35	2.00	2.00	2.00
100.00	50.00	0.00	0.00	0.00	0.00	50.00	50.00	50.00

Uncertainty	50.00	%
Max % error	50.00	% FS

0.20

Max % error

% FS

www.qedenv.com

+44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Registered in England and Wales 1898734 Page 1 of 2

CERTIFICATION **OF CALIBRATION**

Issued by: QED Environmental Systems Ltd.

Environmental conditions during calibration

Temp.	21.6	С
Pressure	1013	mBar

Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
N2	S1261680T	16/05/2024	N2
3 ppm	129726SG	11/04/2024	CH4
10 ppm	119779SG	11/04/2024	CH4
100 ppm	S1385429W	18/01/2026	CH4
1000 ppm	1490137	23/08/2026	CH4
1.0% Vol	S1198415S	10/04/2024	CH4
2.2% vol	S1672767FF	18/07/2026	CH4
5.0% vol	217147	03/12/2024	CH4
15% vol	269223	07/11/2023	CH4
50% vol	189051SG	23/02/2024	CH4
100% vol	S1182097S	15/11/2025	CH4

Calibration results: Pass

Next scheduled calibration: 21/12/2022

Calibration date: 21/12/2021

Issued by: Laura McBride

LOM.

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Registered in England and Wales 1898734

	LO LO)
1	Y	
1		
(
	P)
	Ě	
	2	
8	S	j
p.	Ĉ	

Unit Type: Laser One	Part Number:	Date:	Next Service Due:	e: Customer Name:	
Serial Number: 19255		22-Dec-2021	21-Dec-2022	Air-Met Scientific Pty Ltd	
Actions/Investigation Description	iption		Result	Comments	
Serial Number Check			Yes		
Battery Requires Replacing			No		
Service history of instrument reviewed	ved		Yes		
Instrument turns on			Pass		
Backlight operates correctly			Yes		
External visual inspection performed	p		Pass		
Internal visual inspection performed	P		Pass		
Case assembly closed and screws tightened to correct torque	tightened to correct t	orque	Yes		
Check instrument for visible damages /defects	jes /defects		Pass		
Inwards assessment stage reviewed	þá		Yes		
Buzzer working correctly			Pass		
Software version correct			Fail upgrade	upgraded to 6.02	
Functionality check e.g. LEDs, , Keypad, Display and		Buzzer test	Pass		
Flow is > 0.6 L/min			Pass		
Flow fail test			Pass		
Rattle Test			Pass		
Change external anti-water filter		0	Complete		

EXECUTE

Page 1 of 3

υ
ag
g
N
್ಷ
ω

Instrument Service Report

Unit Type: Laser One Part Number: Date:	Next S	Next Service Due: Customer Name:
Serial Number: 19255 22-Dec-2021		
Actions/Investigation Description	Result	Comments
Bluetooth	Pass	
Flow is > 0.6 L/min	Pass	
Instrument turns on	Pass	
As Received Gas Check Performed	Pass	synth air=2.9
		3ppm=3.5 10ppm=10.5 100ppm=103 1000ppm=985 1%=9900 2.2%=2.15% 5%=4.92 15%=14.6 50%=49.2 100%=98.1
Keypad/dial test	Pass	
Cable Comms test	Pass	
LEDs checked	Pass	
Laser Bench Realignment & Optimization		
Full Calibration	Pass	Instrument passed calibration. Next calibration date 21/12/2022
Customer Comments		

for annual calibration and update of firmware

Page 3 of 3		Signature:	
	Customer Name: Air-Met Scientific Pty Ltd	Approved BY: Laura McBride	
Instrument Service Report	21-Dec-2022	<u>Calibration Engineer:</u> Sabin Neagu	
nent Ser	<u>Date:</u> 22-Dec-2021	<u>Service Engineer:</u> Sabin Neagu	
Instrur	Part Number:		
	Unit Type: Laser One Serial Number: 19255	Service Details: Service Scheme Standard Service	

Appendix G

Gas Flare Reports

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE DUNMORE, NSW

We are **people engineering a clean energy, zero carbon future**, achieving our mission of **expediting the transformation to renewables by delivering clean energy and lower carbon solutions, reliability,** effectively, commercially for our customers.

To achieve our vision and mission we put people first and this makes us different from all the rest.

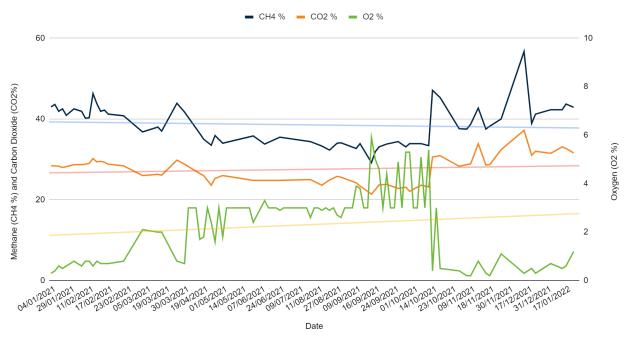
BIOGAS CAPTURE AND ABATEMENT FROM LANDFILL PROJECT

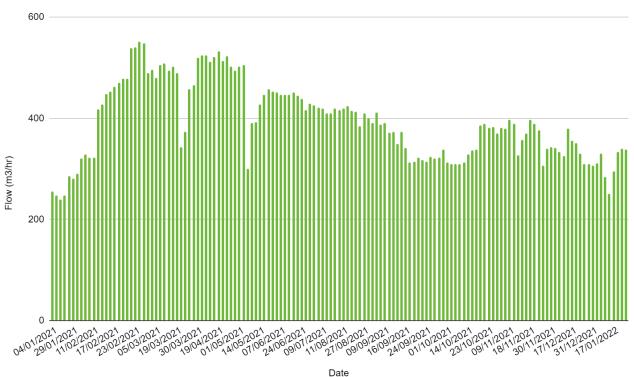
- Long-term contract with Shellharbour City Council to recover and beneficially reuse biogas.
- LGI 1000 ERF compliant biogas flare and gas extraction infrastructure installed in 2013.
- Council benefits from a bespoke biogas management system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation and expansion of the biogas collection and management system.
- LGI supplies operations & maintenance, monitoring and reporting of the biogas collection and management systems to provide the best environmental outcome for Council from the landfill at their Dunmore Waste Management Facility.

P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 1/20 Ashtan Place, Banyo QLD 4014

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

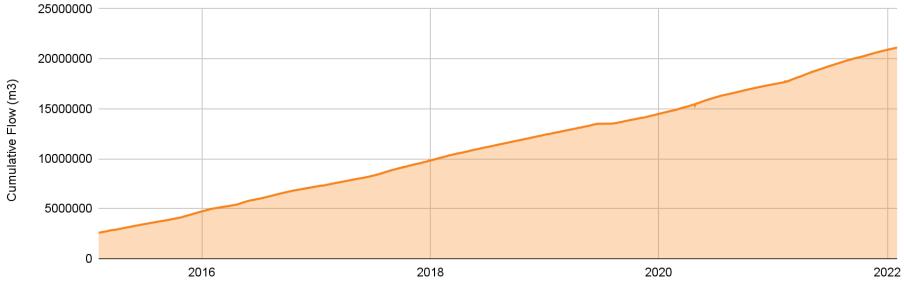
Site:	Dunmore	Report issue date:	09/02/2022
Report month:	January 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jessica North


-	 January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells. April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells. June 2016 - LGI disconnected the extended gas capture system to assist council. September 2016 - LGI disconnected the extended gas capture system to fassist council. November 2016 - LGI commissioned the connection to leachate sump 6 as of 23-11-2016. May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system November 2019 - LGI on site to move mainline up batter and reconnected infrastructure that had been previously disconnected. Including 4 wells on the dimple and 160mm leachate riser. April 2020 - LGI installed flowline to sump 6 after earlier disconnection. February 2021 - LGI installed 13 new vertical wells, including a new submain
Comments on operation / maintenance:	Availability - 95.97% Down Time: 30.00hrs - due to overheating resulting in damages to louvers. Louvers were replaced. Field Tuned: - 13/01/2022
Recommendations:	LGI and Council agree to progress with gas infrastructure improvements. LGI to propose a plan for a pumping trial to remove leachate from flooded wells and infrastructure. LGI is investigating a louver control system.


Flare Operational Data:

Date	CH4 %	CO2 %	O2 %	STACK TEMP C	CUMULATIVE FLOW m3	FLOW m3/h
04/01/2022	42.3	31.5	0.7	688	20,926,097	311
13/01/2022	42.3	33.1	0.5	573	20,989,628	250
21/01/2022	42.9	31.6	1.2	832	21,040,025	340
28/01/2022	-	-	-	840	21,097,209	338
Average	42.5	32.07	0.8	733	-	310

Dunmore- Methane, Carbon Dioxide & Oxygen



Dunmore - Flow Rate

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

Year

- 21,127,163 of flared landfill gas up to 1 February 2022, which represents;

- 200,657 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,344,289 seedlings planted for 10 years
- 7,165 (cars off the road for the last 12 months)
- Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE DUNMORE, NSW

We are people engineering a clean energy, zero carbon future, achieving our mission of expediting the transformation to renewables by delivering clean energy and lower carbon solutions, reliability, effectively, commercially for our customers.

Results Achieved since the Project Commenced

CARBON ABATEMENT

205 thousand tonnes (T CO2e)

SEEDLINGS PLANTED

for 10 years.

CARS OFF THE ROAD

3.4 million seedlings planted 6,800 (for the last 12 months of carbon abatement)

BIOGAS CAPTURE AND ABATEMENT FROM LANDFILL PROJECT

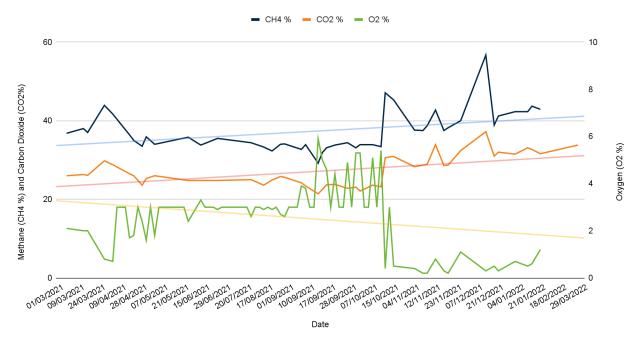
- Long-term contract with Shellharbour City Council to recover and beneficially reuse biogas.
- LGI 1000 ERF compliant biogas flare and gas extraction infrastructure installed in 2013.
- Council benefits from a bespoke biogas management system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation and expansion of the biogas collection and • management system.
- LGI supplies operations & maintenance, monitoring and reporting of the biogas collection and management systems to provide the best environmental outcome for Council from the landfill at their Dunmore Waste Management Facility.

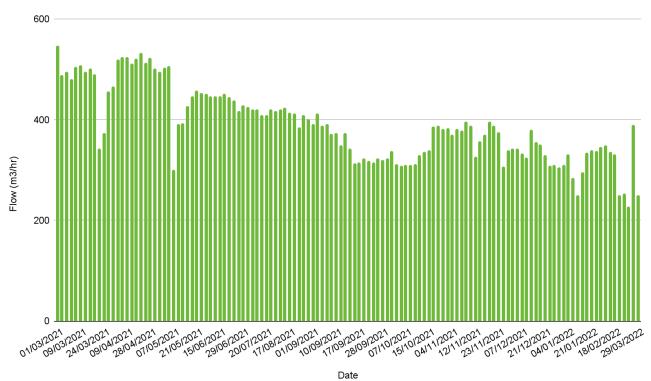
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 1/20 Ashtan Place, Banyo QLD 4014

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	13/04/2022
Report month:	March 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jarryd Doran

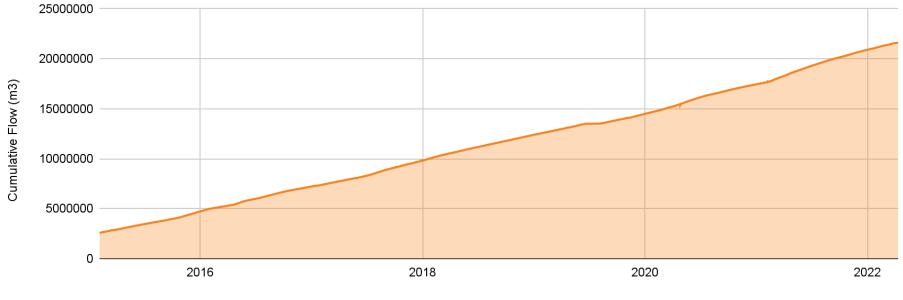
-	 January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells. April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells. June 2016 - LGI disconnected the extended gas capture system to assist council. September 2016 - LGI disconnected the extended gas capture system to assist council. November 2016 - LGI commissioned the connection to leachate sump 6 as of 23-11-2016. May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system November 2019 - LGI on site to move mainline up batter, and reconnected infrastructure that had been previously disconnected, including 4 wells on the dimple and a 160mm leachate riser. April 2020 - LGI installed a flowline to sump 6 after earlier disconnection. February 2021 - LGI installed 13 new vertical wells, including a new submain March 2022 - LGI replaced the flare gas analyser panel with a Draeger model analyser for greater accuracy and reliability
Comments on operation / maintenance:	
Recommendations:	LGI and Council agree to progress with gas infrastructure improvements. After discussion with Council, LGI will not implement any leachate pumping until the end of the current rainy season. The high moisture content within the waste is causing impeding the recovery of biogas. LGI is investigating an automated louver control system in order to optimise the stack temperature control.


Flare Operational Data:


No gas makeup readings this month, as LGI Technicians unable to get to site for handheld readings and remote readings are not available until repairs can be completed.

Date	CH4 %	CO2 %	O2 %	STACK TEMP C	CUMULATIVE FLOW m3	FLOW m3/h
01/03/2022	-	-	-	765	21,345,889	253
10/03/2022	-	33.8	-	-	21,397,228	390
29/03/2022	-	-	-	549	21,560,209	250
31/03/2022	-	32.6	-	-	21,573,915	-
Average	-	33.2	-	657	-	298

Dunmore- Methane, Carbon Dioxide & Oxygen



Dunmore - Flow Rate

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

Year

- 21,573,916 of flared landfill gas up to 1 April 2022, which represents;

- 204,900 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,415,007 seedlings planted for 10 years
- 6,796 (cars off the road for the last 12 months)
- Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

PEOPLE ENGINEERING A ZERO CARBON, CLEAN ENERGY FUTURE.

WWW.LGI.COM.AU

PROJECT PROFILE DUNMORE, NSW

We are people engineering a clean energy, zero carbon future, achieving our mission of expediting the transformation to renewables by delivering clean energy and lower carbon solutions, reliability, effectively, commercially for our customers.

Results Achieved since the Project Commenced

CARBON ABATEMENT

203 thousand tonnes (T CO2e)

SEEDLINGS PLANTED

for 10 years.

CARS OFF THE ROAD

3.4 million seedlings planted 7,200 (for the last 12 months of carbon abatement)

BIOGAS CAPTURE AND ABATEMENT FROM LANDFILL PROJECT

- Long-term contract with Shellharbour City Council to recover and beneficially reuse biogas.
- LGI 1000 ERF compliant biogas flare and gas extraction infrastructure installed in 2013.
- Council benefits from a bespoke biogas management system at minimal cost.
- LGI collaborates closely with the Council regarding the design, installation and expansion of the biogas collection and • management system.
- LGI supplies operations & maintenance, monitoring and reporting of the biogas collection and management systems to provide the best environmental outcome for Council from the landfill at their Dunmore Waste Management Facility.

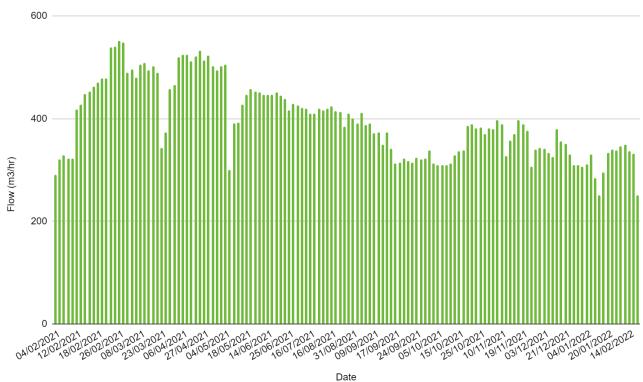
P: +61 7 3711 2225 E: enquiries@lgi.com.au in: linkedin.com/company/lgi-ltd | 1/20 Ashtan Place, Banyo QLD 4014

Saving the planet one landfill, one megawatt, one solar panel, one battery at a time

Site:	Dunmore	Report issue date:	15/03/2022
Report month:	February 2022	Prepared by:	Grace Tap
Prepared for:	Shellharbour City Council	Checked by:	Jarryd Doran

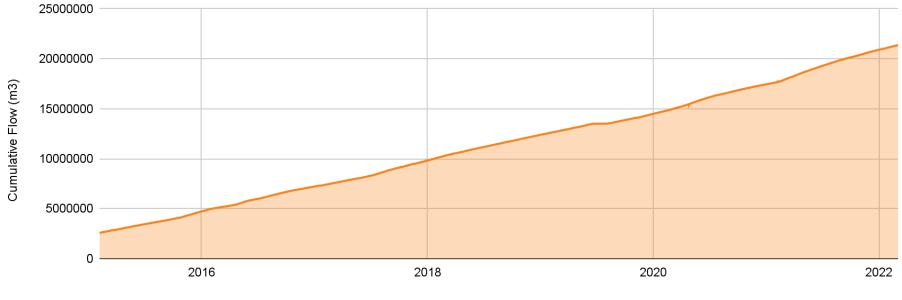
	January 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.			
existing system:	 April 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells. June 2016 - LGI disconnected the extended gas capture system to assist the council. September 2016 - LGI disconnected the extended gas capture system to fassist council. November 2016 - LGI commissioned the connection to leachate sump 6 as of 23-11-2016. May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system November 2019 - LGI on site to move mainline up batter and reconnected infrastructure that had been previously disconnected. Including 4 wells on the dimple and 160mm leachate riser. April 2020 - LGI installed flowline to sump 6 after earlier disconnection. 			
	February 2021 - LGI installed 13 new vertical wells, including a new submain			
Comments on operation / maintenance:	Availability - 100.00% Down Time: 0.00hrs -site flooded restricting recovered biogas, was pumped out on the 25/2.			
Recommendations:	LGI and Council agree to progress with gas infrastructure improvements. LGI to propose a plan for a pumping trial to remove leachate from flooded biogas wells and infrastructure into the Councils leachate management system. LGI is investigating an automated louver control system in order to optimise the stack temperature control.			

Flare Operational Data:


No gas makeup readings this month, as LGI Technicians unable to get to site for handheld readings and remote readings are not available until repairs can be completed.

Date	CH4 %	CO2 %	O2 %	STACK TEMP C	CUMULATIVE FLOW m3	FLOW m3/h
01/02/2022	-	-	-	850	21,129,485	346
08/02/2022	-	-	-	853	21,188,746	349
14/02/2022	-	-	-	833	21,238,466	337
25/02/2022	-	-	-	711	21,319,624	251
Average	-	-	-	812	-	321

Dunmore- Methane, Carbon Dioxide & Oxygen



Dunmore - Flow Rate

BIOGAS MONTHLY REPORT - DUNMORE

Dunmore - Cumulative Flow

Year

- 21,342,316 of flared landfill gas up to 1 March 2022, which represents;

- 202,701 tonnes of CO2 equivalent (total methane abated by gas capture system to date).
- 3,378,346 seedlings planted for 10 years
- 7,176 (cars off the road for the last 12 months)
- Biogas captured is the cumulative flow reading at the last day of the month.

Please note:

This report has been prepared by LGI Limited (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.