

QUARTERLY ENVIRONMENTAL MONITORING REPORT (QEMR) JUNE 2021

DUNMORE RECYCLING & WASTE DEPOT 44 BUCKLEYS ROAD, DUNMORE, NSW, 2529

ENVIRONMENT PROTECTION LICENCE (EPL) 5984

Prepared For: Shellharbour City Council

Project Number: **ENRS0033**Date: **June 2021**

COMMERCIAL IN CONFIDENCE

This document has been prepared consistent with accepted scientific practice, supported by available data and resource conditions, as determined by limited data acquisition during the assessment period, evident at the site at the time. The designated recipients of this report accept all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using the results of the interpretation, the data, and any information or conclusions drawn from it, whether or not caused by any negligent act or omission. To the maximum permitted by law, *ENRS Pty Ltd* excludes all liability to any person or identity, arising directly or indirectly from using the information or material contained herein.

INTELLECTUAL PROPERTY LAWS PROTECT THIS DOCUMENT

Copyright in the material provided in this document is owned by *ENRS Pty Ltd,* and third parties may only use the information in the ways described in this legal notice:

- Temporary copies may be generated, necessary to review the data.
- A single copy may be copied for research or personal use.
- The documents may not be changed, nor any part removed including copyright notice.
- Request in writing is required for any variation to the above.
- An acknowledgement to the source of any data published from this document is mandatory.

ACKNOWLEDGEMENTS

The project was conducted through close liaison with Shellharbour City Council (SCC) and ALS Environmental.

Author and Document Control

Written/Submitted by:	Reviewed / Approved by:
(Beesten	Last
Taite Beeston (BSc.)	Rohan Last (BSc. MSc)
Geologist & Environmental Consultant	Hydrogeologist & Environmental Scientist

Record of Distribution

Copies	Report No. & Title	Status	Date	Prepared for:
1 x PDF	202106_ENRS0033r2e1_SCC Dunmore QEMR	Rev.1	6 th August 2021	ALS c/- Shellharbour City Council (SCC)

EXECUTIVE SUMMARY

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Quarterly Monitoring Report for the Dunmore Recycling and Waste Depot (herein referred to as the Site).

This report summarises the results of field testing and laboratory analysis conducted by ALS for the June 2021 quarterly monitoring period. This Quarterly Report provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

The Site was established in 1945 and has been managed by Shellharbour Council (SC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- ➤ EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- ➤ EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements are provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

The objectives of this Quarterly Environmental Monitoring Report are to:

- ➤ Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria;
- ldentify any on-site or off-site impacts associated with operation of the Site;
- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- Document monitoring results in a Quarterly Environmental Monitoring Report.

The scope of work for this Quarterly Environmental Monitoring Report comprised the collation, assessment and reporting of Site data made available to ENRS from the quarterly June 2021 monitoring period in regard to the following tasks:

- > Review previous reports and document the hydrogeological setting;
- > Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust and landfill surface gas);

- Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- > Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

Based on the findings obtained during the June 2021 quarterly monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- ➤ Groundwater reported exceedances of the assessment criteria for; ammonia, nitrate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-12r, BH-13, BH-14, BH-15, BH-19r, BH-21 and BH-22. This is consistent with previous monitoring events;
- Onsite surface water samples (SWP-1) reported no exceedances to the ANZECC (2000) trigger values for 95% marine/freshwater;
- Downgradient Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down 2) were within the adopted Site Assessment Criteria;
- The existing monitoring locations and sampling regime (specified in EPL 5984) is generally considered to provide a suitable assessment of surface water, leachate and groundwater conditions;
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Gas accumulation monitoring reported satisfactory results for all buildings within 250m of deposited waste;
 - Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;
- Flare temperature data indicated a downward trend in operating temperatures throughout the quarter.
- Average weekly operating temperatures at the Flare fell below the EPL Lower Limit of 760 degrees on six (6) occasions, once (1) in April, twice (2) in May and three times (3) in June.
- ➤ Based on this review of the quarterly June 2021 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- > Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and

> This report must be read in conjunction with the attached Statement of Limitations.

TABLE OF CONTENTS

EXECUT	TVE SUMMARY	. II
1.0	INTRODUCTION	. 1
1.1	Project Background	. 1
1.1.1	Site History	. 1
1.1.2	EPL Requirements	. 1
1.2	Objectives	. 1
1.3	Scope of Work	.2
2.0	SITE DESCRIPTION	. 2
2.1	Location	.2
2.2	Surrounding Landuse	.3
2.2.1	Sensitive Receptors	. 4
2.3	Topography & Drainage	. 4
2.4	Soil Landscape	. 4
2.5	Geology	. 4
2.6	Hydrogeology	. 4
2.6.1	Existing Bores	. 5
2.6.2	Flow Regime	. 5
2.7	Surface Water	.5
3.0	ASSESSMENT CRITERIA	. 5
3.1	Contaminants of Potential Concern	.5
3.2	Water Quality Guidelines	.6
3.2.1	ANZECC Guidelines	. 6
3.2.2	National Environmental Protection Measure (NEPM)	. 6
3.3	Dust Deposition Assessment Criteria	.7
3.4	Surface Methane GAS Assessment Criteria	.7
4.0	SAMPLING METHODOLOGY	. 7
4.1	Water Sampling	.8
4.1.1	Location of Water Monitoring Points	. 8
4.1.2	Depth to Water	. 8
4.1.3	Sample Collection	. 8
4.1.4	Groundwater Sampling	. 8
4.1.5	Field Testing	
4.2	Dust Deposition sampling	. 9
4.3	Surface Methane Gas Monitoring	
4.4	Flare Monitoring	.9
4.5	Laboratory Analysis	10

ე.ს	QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	. 10
5.1	Data Quality Objectives	10
5.2	QA/QC Procedures	11
5.3	EPL Non-Compliance	11
6.0	WATER QUALITY RESULTS	. 11
6.1	Overflow Results	.11
6.2	Field Testing	.11
6.3	Physical Indicators	.12
6.3.1	Salinity (EC & TDS)	.12
6.3.2	Dissolved Oxygen	.12
6.3.3	r	
6.3.4		
6.4	Inorganic Analytes	
6.4.1	Nutrients	
6.4.2		
6.5	Organic Analytes	
6.5.1	Total Organic Carbon	
6.6	Summary of Water Quality Exceedances	
7.0	DUST GAUGE RESULTS	. 15
8.0	FLARE MONITORING	16
9.0	SURFACE METHANE GAS RESULTS	. 17
10.0	ENVIRONMENTAL ASSESSMENT	. 17
10.1	Monitoring Point Summary	.17
11.0	CONCLUSION AND RECOMMENDATIONS	. 17
12.0	LIMITATIONS	. 19
13.0	REFERENCES	. 20
_		_

LIST OF TABLES, FIGURES & APPENDICES

TABLES

Table 1: Site Identification

Table 2: Surrounding Land use

Table 3: Groundwater Assessment Criteria

Table 4: Adopted Guideline Criteria

Table 5: Data Quality Objectives

Table 6: Summary of Quarterly Water Monitoring Exceedances

Table 7: Summary of Dust Gauge Results

Table 8: Summary of Flare Monitoring Results

Table 9: Water Quality Results

FIGURES

Figure 1: Site Location Map

Figure 2: Sampling Points & Site Plan

Figure 3: Surface Methane Gas Sample Transects

Figure 4: Regional Geology

Figure 5: Registered Bores

APPENDICES

Appendix A EPL 5984 Sampling Point Summary (NSW EPA, 27/11/2020)

Appendix B Field Sheets, Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples

Appendix C Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

Appendix D Surface Gas (Methane) Field

Sheets Appendix E Calibration Certificates

Appendix F Flare monitoring Reports

1.0 INTRODUCTION

Environment & Natural Resource Solutions (ENRS Pty Ltd) were commissioned as independent environmental consultants by *ALS Environmental* (Wollongong) on behalf of *Shellharbour City Council* (SCC) to prepare the Quarterly Monitoring Report for the Dunmore Recycling and Waste Depot (*herein referred to as the Site*).

This report summarises the results of field testing and laboratory analysis conducted by ALS for the June 2021 quarterly monitoring period. This Quarterly Report provides the necessary data assessment and analysis to meet requirements of the Site's Environment Protection Licence/s (EPL's); No.5984 and No.12903.

1.1 PROJECT BACKGROUND

1.1.1 Site History

The Site was established in 1945 and has been managed by Shellharbour Council (SC) since 1983. The Site accepts putrescible and non-putrescible waste within its managed landfill cell. Recycling activities conducted at the site include Resource Recovery Centre, Revolve Centre and Food Organics and garden Organics (FOGO) processing.

1.1.2 EPL Requirements

Waste regulation in NSW is administered by the EPA under the Protection of the Environment Operations (POEO) Act (1997); the *Waste Avoidance and Resource Recovery Act* (2001).

The Site operates under the conditions of two (2) EPLs:

- ➤ EPL No. 5984. Landfill activities. Consisting of; extractive activities, waste disposal and composting.
- ➤ EPL No. 12903. Resource recovery activities. Consisting of; composting and waste storage within the FOGO Facilities and Resource Recovery Centre.

A copy of the relevant EPL sections outlining the sampling requirements are provided in **Appendix A** (EPL No. 5984). ENRS note that EPL No. 12903 does not specify sample points.

1.2 OBJECTIVES

The objectives of this Quarterly Environmental Monitoring Report are to:

- ➤ Meet the environmental monitoring requirements of Sites EPLs; No. 5984 and 12903;
- Assess and analyse the environmental monitoring data for the Site against NSW EPA endorsed criteria:
- Identify any on-site or off-site impacts associated with operation of the Site;

- Advise SCC if the current environmental monitoring program is providing adequate information to identify potential environmental impacts from existing operations (if any) and provide recommendations on improvement to the monitoring program if required; and
- Document monitoring results in a Quarterly Environmental Monitoring Report.

1.3 SCOPE OF WORK

The scope of work for this Quarterly Environmental Monitoring Report comprised the collation, assessment and reporting of Site data made available to ENRS from the quarterly December 2019 monitoring period in regard to the following tasks:

- Review previous reports and document the hydrogeological setting;
- > Tabulate results of all monitoring data for both water and dust samples, collected and provided by ALS as required by the EPLs for the respective reporting period.
- Analysis and interpretation of all monitoring data (water, dust, landfill surface gas and flare);
- ➤ Identification of any deficiencies in environmental performance identified by the monitoring data, trends or environmental incidents, and identification of remedial actions taken or proposed to be taken to address these deficiencies; and
- Recommendations on improving the environmental performance of the facility including improvement to the monitoring program.

2.0 SITE DESCRIPTION

2.1 LOCATION

The Site is located at 44 Buckleys Road, Dunmore, NSW, 2529, legally defined as Lot 21 in Deposited Plan 653009 and Lot 1 Deposited Plan 419907. The Site is situated approximately three and a half (3.5) kilometres southwest of the Shellharbour town centre. The area's regional location is defined in **Figure 1** below. Details of the Site boundary and sampling points are provided in the Site Plan (see **Figure 2**). The key features required to identify the Site are summarised in **Table 1**.

Table 1: Site Identification

Aspect	Description		
Site	Dunmore Recycling and Waste Depot		
Street Address	44 Buckleys Road, Dunmore, NSW 2529		
Site Area	72.36 hectares		

Aspect	Description
Title Identifier	Lot 21 DP 653009, Lot 1 DP 419907
Zoning	RU1 Primary Production
Local Government Area	Shellharbour City Council

Dunmore Recycling & Waste Depot

Figure 1: Site Location Map

Source: SIX Maps (https://maps.six.nsw.gov.au/) (cited 16/01/2020)

2.2 SURROUNDING LANDUSE

The current activities and operations on adjacent properties and the surrounding area include:

Table 2: Surrounding Land use

Direction	Land Use
North:	Buckleys Road, commercial infrastructure and open grassland. Residential dwellings along the northwest border of the Site. Golf course further to the northeast.
East:	Dunmore Resources and Recycling facility immediately to the east, bushland to the southeast.
South:	Bushland, Rocklow Creek (300m from landfill activities). Further to Kiama Community Recycling Centre and Riverside Drive.
West:	Bushland to the southwest, scattered trees immediately to the west and further to the Princes Highway. Boral Quarries complex beyond the Highway. Residential dwellings to the Northwest.

2.2.1 Sensitive Receptors

The nearest sensitive receptors are likely to include:

- Recreational users of the Minnamurra River estuary environs;
- Down gradient stakeholders; and
- Down gradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems (GDE) near discharge zones.

2.3 TOPOGRAPHY & DRAINAGE

A review of the current series Albion Park (90281N) 1:25,000 topographic map sheet was conducted to assess the regional topography and to identify potential runoff and groundwater controls in the region. Topography provides a useful indicator for groundwater controls including gradient and flow path.

The Site presents low topographic relief, remaining between approximately 3-5 mAHD across the entirety of the Site. The regional topographic gradient trends south-southeast towards Rocklow Creek and Minnamurra River.

2.4 SOIL LANDSCAPE

The 2018 annual monitoring report (Environmental Earth Sciences 2018) reported the soil profile at the Site as organic, black, massive sandy loam topsoil overlying loose bleached light grey sand with iron staining in the subsoil.

Review of the online *Shellharbour City Council* Acid Sulphate Soil Risk Map indicates that the Site lies within a **Class 3** area, suggesting that works beyond 1 metre below the ground level (mbGL) have the potential to encounter Acid Sulphate Soils (ASS).

2.5 GEOLOGY

A review of the Site geology was undertaken with reference to the Wollongong 1:250,000 geological series sheet (Si56.9) and the Shellharbour-Kiama area coastal quaternary 1:50,000 geology sheet. The Site is predominately underlain by the Quaternary alluvial deposits (Qal) characterised as Holocene backbarrier flat; marine sand, silt, clay, gravel and shell (Qhbf). The northern most corner of the site is intersected by the Gerringong Volcanics (Pbb) characterised by Latite. Based on the mapped geology, previous investigations and borehole logs, the Site infrastructure including the landfill cell is located within the alluvial deposits.

2.6 HYDROGEOLOGY

Groundwater resources in the area are expected to be associated with *Shallow unconfined* alluvial and unconsolidated systems, generally less than 20 m in depth with moderate to high transmissivity, variable water quality, and strongly controlled by rainfall recharge.

2.6.1 Existing Bores

A network of groundwater monitoring bores is installed at the Site to provide specific data on the quality and nature of groundwater.

A review of the *NSW Office of Water* (*NOW*) existing bore records was conducted to develop the conceptual understanding of regional groundwater conditions, including aquifer depths, yields, water quality, and distribution. A search of the Bureau of Meteorology Australian Groundwater Explorer groundwater database identified a total of eighty-eight (88) registered bores within one and a half (1.5) kilometres of the Site (see **Figure 5**). Registered bores in the area are predominantly associated with the Landfill Site and with the quarry complex (*Boral Site*) to the west of the EPL Site. The majority of bores are registered for monitoring purposes, excluding a single well (GW044447), which is registered for stock and domestic purposes. The stock bore is located approximately one (1) kilometre to the north of the Site, on the western side of the Princes Highway, which is considered to be up gradient of the Site and not in direct hydraulic connectivity. Registered bore depths are between 1.25 m and 22 m. Bore records indicate shallow unconsolidated aquifer systems.

2.6.2 Flow Regime

Previous reports (Environmental Earth Sciences 2018) have identified that groundwater flows vary across the Site, but the general trend is south, towards Rocklow Creek.

Based on the unconfined nature of the aquifer, the shallow groundwater flow is inferred to mimic topography with low to moderate hydraulic gradients flowing towards the south.

The Site and adjoining land, is largely unsealed with potential for local recharge from rainfall infiltration. Likely discharge areas are predominantly to the south and east of the Site including swamps and Rocklow Creek. The waterbodies surrounding the Site are recognised as State Environmental Planning Policy No.14 (SEPP14) registered wetlands and Proximity Areas for Coastal Wetlands border the eastern, southern and western boundaries of the Site.

2.7 SURFACE WATER

The Site topography indicates that surface water flow will generally trend to the east towards off Site wetlands and southeast towards Rocklow Creek. These present the primary regional drainage structures for natural surface water and runoff. A series of stormwater infrastructure is present at the Site which is expected to capture run off. Infrastructure includes but not limited to; stormwater drains; sedimentation ponds; levee banks; collection and diversion drains; and leachate dams.

3.0 ASSESSMENT CRITERIA

3.1 CONTAMINANTS OF POTENTIAL CONCERN

This section of the report provides a summary of the Contaminants of Potential Concern (CoPC) associated with the Site. CoPC's are identified in the Sites EPL/s which document the

CoPC and water quality indicators required to be monitored. Analytical requirements for all water sampling are provided in Error! Reference source not found..

3.2 WATER QUALITY GUIDELINES

Nationally developed guidelines are provided in the National Water Quality Management Strategy (NWQMS): Guidelines for Groundwater Protection in Australia (ARMCANZ & ANZECC 1995). For the purpose of this assessment, the relevant criteria selected to protect environmental values are summarised in **Table 3** below:

Environmental Value

Relevant Guideline

ANZG (2018) (Australian and New Zealand Guidelines for Fresh and Marine Water Quality).

National Environment Protection Measure (NEPM) (2013).

Drinking Water

Australian Drinking Water Guidelines (ADWG) (2018)

Table 3: Groundwater Assessment Criteria

3.2.1 ANZECC Guidelines

The relevant criteria for this water quality assessment are the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG;2018). The ANZG (2018) provide Default Guideline Values (DGVs) for four (4) levels of protection categorised by the percentage of species possibly affected, being 80%, 90%, 95% or 99% of species. Values for a level of protection for 95% of species in a marine environment have been adopted and are displayed in **Table 4**. Where DVGs are not available reference is made against the ANZECC (2000) Trigger Values (TVs). The *NSW Office of Water* (DECCW;2007) endorsed groundwater management guidelines recommend assessment for aquatic ecosystems based on the **95 per cent of species level of protection**.

Surface water Guideline **Parameter Groundwater Guideline Ammonia** 0.91 mg/L 1.88 mg/L **Nitrate** 0.70 mg/L 0.70 mg/L pН 6.5-8.5 pH units 6.5-8.5 pH units Soluble Iron 0.3 mg/L 0.3 mg/L 1.9 mg/L Manganese 1.9 mg/L 125-2200 µS/cm **Electrical Conductivity**

Table 4: Adopted Guideline Criteria

3.2.2 National Environmental Protection Measure (NEPM)

The NSW EPA has endorsed the use of the Groundwater Investigation Levels (GILs) given in the 2013 ASC NEPM 'Schedule B(1) Guideline on the Investigation Levels for Soil and

Groundwater'. The latest NEPM provide a framework for risk-based assessment of groundwater contamination.

Groundwater Health Screening Levels (HSLs) are provided for four (4) land use categories for vapour intrusion (Table 1A[4]) associated with Total Recoverable Hydrocarbons TRH (F1 & F2) and BTEX compounds.

NEPM	Description of Land use Categories
HIL A	Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
HIL B	Residential B with minimal opportunities for soil access; includes buildings with fully and permanently paved yard space such as high-rise buildings and apartments.
HIL C	Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.
HIL D	Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.
GILs	Groundwater Investigation Levels (GILs) should be applied based on the receiving environment and groundwater resources. GILs are provided in NEPM Table 1C for; Fresh Waters; Marine Waters; and Drinking Water;
EILs	 Ecological Investigation Levels (EILs) for common contaminants in the top two (2) metres of soil based on three (3) generic land use settings: Areas of ecological significance; Urban residential areas and public open space; and Commercial and industrial land uses.

3.3 DUST DEPOSITION ASSESSMENT CRITERIA

Criteria for collection and assessment of dust deposition concentrations are provided within the Australian standard AS3580.10.1 - Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter - Deposited matter - Gravimetric method. AS3580.10.1 provides an acceptable level of 4 g/m²/month.

3.4 SURFACE METHANE GAS ASSESSMENT CRITERIA

The NSW EPA Solid Waste Landfill Guidelines 2nd Edition (2016) provides sampling methodologies and threshold for surface methane gas concentrations at landfill sites. The acceptable threshold for capped landfills is 500 parts per million (ppm) at 5 cm above the capping surface.

4.0 SAMPLING METHODOLOGY

Field sampling was conducted by *ALS Environmental* (Wollongong) as commissioned by *SCC* in June 2021. ENRS understands that sampling was conducted in accordance with ALS sampling protocols with reference to current industry standards and Code of Practices. The following sub-sections provide a summary of the sampling methodologies.

Monitoring frequency is defined by the EPL/s and is designed to capture necessary site data to support assessment of Site conditions (quarterly and annual), any long-term trends or overflow events. Monitoring is conducted quarterly and annually for selected analytes with additional overflow and event-based sampling triggered by Site conditions.

4.1 WATER SAMPLING

4.1.1 Location of Water Monitoring Points

Groundwater and surface water monitoring requirements are defined by the EPL No. 5984, as provided in **Appendix A**. In summary the sampling regime collected samples from; five (5) surface waters; twelve (12) groundwater monitoring wells; and one (1) leachate points. Sampling locations are illustrated in **Figure 2** attached.

4.1.2 Depth to Water

Prior to sampling, the depth to the groundwater table was measured from the top of casing (TOC) using a water dipper and clear disposable bailer. The bores were inspected for the presence of hydrocarbon and the thickness of any LNAPL was measured visually in clear disposable bailers. **No LNAPL was identified in monitoring Wells**.

4.1.3 Sample Collection

Sampling is conducted independently by *ALS Environmental* under contract with *SCC*. Chain of Custody records and field sheets are provided in Appendix D. ENRS understand sampling is conducted in accordance with *ALS* sampling protocols.

4.1.4 Groundwater Sampling

Groundwater Wells were sampled in order of distance from any areas of known contamination to ensure that lower contaminated Wells are sampled before likely higher contaminated Wells. Groundwater bores were purged prior to sampling by removing at least three (3) well volumes or low flow parameter stabilisation methods applied with field sheets provided to document pumping volumes and field parameters. Samples were collected using clear disposal bailers. and were sealed in laboratory-prepared sampling containers appropriate for the analysis. All samples were stored on ice immediately after their collection and transported to the laboratory under Chain of Custody (CoC) documentation.

Surface water and leachate samples were collected using as 'grab samples' from the midpoint of the structure and at mid-depth.

Any loss of volatile compounds was kept to a minimum by employing the following sampling techniques:

- Minimal practical disturbance during sampling;
- Samples placed in sample containers as soon as possible;
- Sample containers contain zero headspace;

- Samples placed directly on ice and transported to the laboratory as soon as possible; and
- > Employing the most appropriate analytical method to minimise volatile losses at the laboratory.

4.1.5 Field Testing

Field testing was conducted during bore purging and sampling to record physical water parameters. A multi-probe water quality meter was used to measure the following parameters:

- Oxygen Reduction Potential (ORP, representing redox).
- Electrical Conductivity (Salinity EC);
- Temperature; and
- > pH (Acidity).

4.2 DUST DEPOSITION SAMPLING

Measurement of Dust deposition was carried out in accordance with the Australian Standard AS3580.10.1 (2016). This Australian Standard provides a mean of determining the mean surface concentration of deposited matter from the atmosphere.

Dust collection gauges were set up for a one (1) month period between the **14**th **May 2021** and **16**th **June 2021**. A total of four (4) dust monitoring locations were considered adequate to assess site conditions.

4.3 SURFACE METHANE GAS MONITORING

The concentration of methane gas (in units of ppm) at the Site was carried out in accordance with EPA Guidelines Solid Waste Landfill 2nd Edition 2016. On the day of sampling the wind speed was below 10 km/hr. Testing was conducted using a calibrated *LaserOne* portable gas monitor specifically designed for landfill gas monitoring. A calibration Certificate is provided in Error! Reference source not found.

One field technician commenced data collection along transect lines in a grid pattern across the landfill surface at 25-metre spacings. A site plan depicting the sampled transect line is provide in **Figure 3**. Transects were recorded using a Magellan *SporTrak* GPS. The concentration of methane gas was measured at a height of 5 cm above the ground in areas with intermediate or final cover over the emplaced waste. The concentration of methane gas was also recorded in any buildings located within a distance of 250 m of the deposited waste, and any depressions or surface fissures away from the sampling grid were also investigated.

4.4 FLARE MONITORING

Landfill gases are formed through bacterial action on emplaced waste and are a normal byproduct of Landfilling operations. Landfill gas is a mixture of many different gases, typically its major components include methane and carbon dioxide. Smaller concentrations of nitrogen,

oxygen, ammonia, sulfides, hydrogen, carbon monoxide, and nonmethane organic compounds (NMOCs) and Volatile Organic Compounds (VOC's) may also be present.

When operated efficiently the use of a gas flare to burn landfill gas can significantly reduce emissions of methane, NMOCs and VOC's.

The flare is monitored, maintained and operated by *LGI LTD*. Copies of LFG reports for the relevant reporting period are included as **Appendix F**.

4.5 LABORATORY ANALYSIS

ALS, a NATA accredited laboratory, was contracted by SCC to undertake the sample analysis in accordance with current standards. Laboratory QA/QC results are detailed in the Laboratory reports contained in the appendices section of this report.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

5.1 DATA QUALITY OBJECTIVES

Data Quality Objectives (DQO) are required to define the quality and quantity of data needed to support management decisions. The process for establishing DQO's is documented by Australian Standard: AS 4482.1-2005 and referenced by the National Environment Protection (Assessment of Site Contamination) Measure (NEPC;2013). The DQO's for the investigation were to obtain representative data to allow assessment of:

- groundwater quality;
- > The risks posed to human health and the environment, including potential future users of the Site; and
- The requirements for any further investigative works.

The assessment was conducted to a standard consistent with generally accepted and current professional consulting practice for such an investigation. The evaluation criteria adopted for the investigation are summarised in **Table 5**.

Table 5: Data Quality Objectives

DQO	Evaluation Criteria
Documentation	Completion of field records, chain of custody documentation,
completeness	laboratory test certificates from NATA-accredited laboratories.
Data comparability	Use of appropriate techniques for the sampling, storage and transportation of samples. Use of NATA accredited laboratory using NEPM endorsed procedures.
Data representativeness	Adequate sampling coverage of all areas of environmental concern at the Site, and selection of representative samples.

DQO	Evaluation Criteria
	Use properly trained and qualified field personnel and achieve field and laboratory QA/ QC criteria.

5.2 QA/QC PROCEDURES

Data provided for the purpose of this report by SC was prepared by ALS. ALS is NATA accredited for the laboratory testing. The QA/QC indicators as provided to ENRS either all complied with the required standards, or showed variations that would have no significant effect on the quality of the data or the conclusions of this environmental assessment. Therefore, the data is considered acceptable for use in this assessment.

It should be noted that whilst the EPL does not require field duplicates, ENRS recommend sampling include rinsate samples and field duplicates at the standard rate of 1 in 10, or field QA/QC is conducted in accordance with *ALS* procedures.

5.3 EPL NON-COMPLIANCE

Monitoring requirements are defined by the EPL.

6.0 WATER QUALITY RESULTS

Laboratory results for groundwater and surface water were provided to ENRS for tabulation and comparison with relevant EPL assessment criteria. A summary of results is provided in **Table** with comparison against the relevant Site Assessment Criteria (SAC). Exceedances of relevant guidelines are also summarised in **Table 6**. The laboratory certificates of analysis are provided in Appendix B.

6.1 OVERFLOW RESULTS

ENRS understand no overflow events were recorded during the **June 2021** quarterly monitoring period. Hence, no water samples were collected by ALS and no results are presented for this reporting period.

6.2 FIELD TESTING

Field testing is conducted by ALS during sampling to record physical water parameters. A water quality meter is used to measure the following parameters in the field:

- Electrical Conductivity (Salinity);
- > pH (Acidity); and
- Dissolved Oxygen

6.3 PHYSICAL INDICATORS

6.3.1 Salinity (EC & TDS)

Salinity is reported by the laboratory as either Electrical Conductivity (EC) or Total Dissolved Solids (TDS). The ANZECC guidelines document a conversion ratio for of 0.68 mg/L = 0.68 EC (μ S/cm). Table 3.3.3 of the ANZECC (2000) guidelines document default TV for EC in lowland freshwater rivers between 125 μ S/cm - 2,200 μ S/cm (~1,500 mg/L).

Groundwater

Salinity in groundwater is typically higher than surface water due to mineral dissolution. Groundwater salinity at the Site was generally reported above the freshwater SAC of 2,200 μ S/cm. Elevated results were reported in four (4) groundwater bores ranging between; **2,550 \muS/cm (BH-12r)** and **7,300 \muS/cm (BH-1c)**. Results are consistent with the previous quarterly monitoring events.

Leachate

Leachate salinity for the *March* Quarterly 2021 monitoring period was reported to be **15,700 µS/cm** (LP1) and **15,900 µS/cm** (Sump) which is above the TV.

6.3.2 Dissolved Oxygen

Levels of Dissolved Oxygen (DO) were measured in the field during sampling. DO reflects the equilibrium between oxygen-consuming processes and oxygen-releasing processes. DO can initiate redox reactions resulting in the uptake or release of nutrients. Low DO concentrations can result in adverse effects on many aquatic organisms which depend on oxygen for their efficient metabolism. At reduced DO concentrations many compounds become increasingly toxic, for example Zinc, Lead, Copper, phenols, cyanide, hydrogen sulfide and Ammonia.

The ANZECC (2000) guidelines Table 3.3.2 outlines a range between 85% to 110% saturation for low land rivers. Assuming a water temperature of 18°C this is equivalent to approximately 7-11 mg/L or ppm.

Dissolved Oxygen was recorded for Leachate only, at **0.98 mg/L** (Sump) and **1.26 mg/L** (LP1).

6.3.3 pH

pH is a measure of hydrogen activity. pH determines the balance between positive hydrogen ions (H+) and negative hydroxyl ions (OH-) and provides a test of water acidity (low pH) or alkalinity (high pH). Most natural freshwaters have a pH in the range 6.5 to 8.0. Changes in pH may affect the physiological functioning of biota and affect the toxicity of contaminants. Both increases and decreases in pH can result in adverse effects, although decreases are likely to cause more significant problems. Low pH indicates acidic conditions which may increase the mobility of heavy metals, whilst high pH indicates alkaline conditions which may also generate Ammonia. Previous investigations of other regional Landfill Sites in the Illawarra-Shoalhaven (Forbes Rigby;1996) report regionally acidic groundwater with low readings in the range of 4.3 pH associated with silica saturation and oxidation of accessory marcasites grains (iron sulphide).

Surface Water

Surface water reported pH values of between pH 7.2 (SWP1) and pH 8.5 (SWP-4).

Groundwater

Groundwater pH was reported between **pH 6.7** (BH-14) and **pH 7.3** (BH-3). All groundwater results were reported within the ANZECC recommended range of pH 6.5-8.0. The results are largely within the historical range of values.

6.3.4 Total Suspended Solids (TSS)

TSS provides a measure of turbidity reported as the mass of fine inorganic particles suspended in the water. Measurement of TSS provides a valuable indication of the sediment and potential nutrient load. Elevated TSS decreases light penetration whilst phosphorus is absorbed onto sediment surfaces.

TSS was reported for surface water only. Concentrations were reported between <5 mg/L (SWC-down2 and SWC2) and 46 mg/L (SWC-up).

6.4 INORGANIC ANALYTES

6.4.1 Nutrients

Water samples were analysed for select nutrients including Ammonia, Ammonium, Nitrate and Nitrite. The most bio-available forms of Nitrogen are Ammonium (NH4+) and Nitrate (NO3-). Ammonia is an oxygen-consuming compound and is toxic to aquatic biota at elevated concentrations. Ammonia toxicity increases under low oxygen levels and higher pH.

Ammonia

Ammonia was measured within groundwater monitoring bores between **0.36 mg/L** (BH-14) and **340 mg/L** (BH-1c). Eight (8) out of the nine (9) groundwater wells reported exceedances over the adopted trigger value of 0.91 mg/L. This is consistent with historical values.

Ammonia in leachate was reported at **1960 mg/L** (LP1) and **1960 mg/L** (Sump). High ammonia concentrations are expected in untreated leachate.

Ammonium

Ammonium was measured at Rocklow Creek surface water monitoring locations between **0.16 mg/L** (SWC-down 2) and **0.24 mg/L** (SWC-2 and SWC-down). All results are below the adopted trigger value of 0.91 mg/L.

Nitrate

Results for Nitrate in groundwater were reported between <.01 mg/L in multiple bores and 17.4 mg/L (BH-15). A total of four (4) exceedances in groundwater were reported above the TV of 0.7mg/L including: 17.4 mg/L (BH-15), 17.2 mg/L (BH-14), 2.01 mg/L (BH-13) and 1.49 mg/L (BH-3).

Nitrate in Rocklow Creek surface water samples were all reported below the TV of 0.7mg/L. The results are considered satisfactory.

Nitrate in leachate was reported at **11.1 mg/L** (Leachate Sump), **<0.10 mg/L** (Leachate Tank LP1).

6.4.2 Metals & Metalloids

Magnesium (Total Mg)

Magnesium was analysed in selected surface water samples. Concentrations of magnesium in surface water were reported between **18 mg/L** (SWP-1) and **1,100 mg/L** (SWC-down).

Manganese (Total Mn)

Manganese was analysed in groundwater and leachate sampling points. Concentrations of Manganese in groundwater were reported between **0.102 mg/L** (BH-1c) and **0.685 mg/L** (BH-9). Leachate concentrations were reported as **0.448 mg/L** (Sump) and **0.513 mg/L** (Tank). These values are below the adopted TV (1.9 mg/L 95% of Species - freshwater) and are considered acceptable. Concentrations of Manganese should continue to be reviewed during subsequent monitoring events.

6.5 ORGANIC ANALYTES

6.5.1 Total Organic Carbon

Total Organic Carbon (TOC) provides a measure of the total concentration of organic material in a water sample. TOC is typically higher in surface water than groundwater, however high TOC is also characteristic of leachate from landfill. TOC provides a marker for biological activity associated with contaminant degradation and can be used to delineate contaminant plumes. TOC influences geochemical processes by:

- acting as proton donors/acceptors;
- providing pH buffering;
- participating in mineral dissolution/precipitation reactions; and
- providing carbon substrate for microbe-based biodegradation.

TOC was reported during monitoring period at the following concentrations:

- Groundwater; between 16 mg/L (BH-4) and 219 mg/L (BH-1c); and
- Leachate; 3080 mg/L (Sump) and 3540 mg/L (LP1).

6.6 SUMMARY OF WATER QUALITY EXCEEDANCES

The following table provides a summary of exceedances above the ANZECC (2000) guidelines for the protection of 95% of fresh water and marine species for the collected water samples.

Table 6: Summary of Quarterly Water Monitoring Exceedances

Sample	EPA Point	Exceedances	Comments	
ID	No.	Results	Guideline	
BH-1c	3	Ammonia 318 mg/L EC 7,080 µS/cm	0.91 mg/L 125-2200 μS/cm	
ВН-3	5	Ammonia 15.6 mg/L Nitrate 11.6 mg/L	0.91 mg/L 0.7 mg/L	
BH-4	6	Ammonia 10.8 mg/L	0.91 mg/L	
BH-9	18	Ammonia 98.8 mg/L EC 5,000 µS/cm	0.91 mg/L 125-2200 μS/cm	Exceedances of Ammonia, Nitrate, pH and Salinity (EC) were
BH-12r	17	Ammonia 6.68 mg/L EC 2,270 µS/cm	0.91 mg/L 125-2200 μS/cm	encountered in multiple wells at the Site.
BH-13	3	Ammonia 1.48 mg/L Nitrate 5.20 mg/L	0.91 mg/L 0.7 mg/L	Concentrations are elevated and within range of historical data sets.
BH-14	11	Nitrate 32.0mg/L	0.7mg/L	Exceedances of Ammonia and Electrical Conductivity were
BH-15	7	Ammonia 20.40 mg/L EC 3260 µS/cm	0.91 mg/L 125-2200 μS/cm	encountered
BH-18	25	No exceedances		
BH-19r	16	Ammonia 4.77mg/L	0.9 mg/L	
BH-21	23	Ammonia 4.28 mg/L EC 2,570 µS/cm	0.91 mg/L 125-2200 μS/cm	
BH-22	24	Ammonia 1.38 mg/L	0.91 mg/L	
SWP-1	1	No exceedances	-	-
SWC-up	20	No exceedances		
SWC-2	19	No exceedances		
SWC- down	21	No exceedances	-	-
SWC- down 2	22	No exceedances		
Leachate Tank LP1	2	Ammonia 1610 mg/L DO 46.6% EC 16,700 µS/cm	0.91 mg/L 85-100% 125-2,200 μS/cm	Elevated levels of Ammonia and EC considered to be characteristic of untreated leachate material.

7.0 DUST GAUGE RESULTS

The below table provides the results of the dust depositions results. A total of four (4) dust collectors were onsite for one (1) month between 15th May and 17th June 2021, in general accordance with AS3580.10.1.

Table 7: Summary of Dust Gauge Results

Sample ID	Guideline Criteria (g/m²/month)	Total Insolvable Matter (g/m²/month)	Comments
DDG1		<0.1	Satisfactory
DDG2	4	0.1	Satisfactory
DDG3		0.4	Satisfactory
DDG4		0.2	Satisfactory

Results for depositional dust during the June 2021 quarterly monitoring period reported levels of dust between below the adopted assessment criteria of **4 g/m²/month**. The results are therefore considered satisfactory. Dust gauge locations are provided in **Figure 2** attached. It is recommended that monitoring is continued as part of the quarterly regime.

8.0 FLARE MONITORING

Table 8: Summary of Flare Operating Temperatures

Monitoring Period	Month	Date	Average Flare Temp
	April	6-Apr	794
		9-Apr	836
		14-Apr	827
		19-Apr	820
		29-Apr	807
		30-Apr	744
	Mean April Temp	804.6	
	May	1-May	893
		7-May	634
Qtr3		14-May	792
Quo		25-May	823
		27-May	751
		31-May	802
	Mean M	782.5	
	June	7-Jun	758
		14-Jun	769
		18-Jun	755
		24-Jun	778
		29-Jun	719
	Mean June Temp		755.8
Mea	782.4		

Weekly average operating temperatures supplied by LGI displayed typical variation associated with a continuous process but generally trended downward over the quarter.

Weekly operating temperatures at the Flare fell below the Lower Limit of 760 degrees on six (6) occasions, once (1) in April, twice (2) in May and three times (3) in June.

9.0 SURFACE METHANE GAS RESULTS

The surface gas monitoring from the June 2021 quarterly monitoring period reported levels of methane between 1.4 ppm and 36.9 ppm which is below the EPA license limits of 500 ppm. The results are considered satisfactory. A table of results is provided in **Appendix D**.

10.0 ENVIRONMENTAL ASSESSMENT

10.1 MONITORING POINT SUMMARY

Field measurements and laboratory water quality results from the *June 2021* quarterly monitoring period reported concentrations analytes generally within the range historical values. Groundwater water within the Site boundary reported high levels of analytes in exceedance of the SAC, considered to be characteristic of landfill and leachate.

Offsite sample locations within Rocklow Creek reported satisfactory results.

All dust gauges were reported below the site assessment criteria which was considered satisfactory.

Results of surface methane gas monitoring recorded satisfactory results. The landfill surface cap is therefore considered intact and effective.

Results of flare monitoring reported exceedances for temperature on six (6) occasions.

11.0 CONCLUSION AND RECOMMENDATIONS

Based on the findings obtained during the *June 2021* quarterly monitoring program the following conclusions and recommendations are provided:

- Shallow groundwater flow is expected to mimic topography with low hydraulic gradients flowing towards the south and southeast towards Rocklow creek. The nearest sensitive receptors are likely to include; recreational users of the Minnamurra River estuary environs; down gradient stakeholders; and downgradient alluvial aquifers, swamps, Rocklow Creek, Minnamurra River and Groundwater Dependent Ecosystems near discharge zones;
- Groundwater reported exceedances of the assessment criteria for; ammonia, nitrate and salinity (EC) within multiple groundwater bores including; BH-1c, BH-3, BH-4, BH-9, BH-

- 12r, BH-13, BH-14, BH-15, BH-19r, BH-21 and BH-22. This is consistent with previous monitoring events;
- Onsite surface water samples (SWP-1) reported no exceedances to the ANZECC (2000) trigger values for 95% marine/freshwater;
- Downgradient Rocklow Creek surface water samples (SWC-Up, SWC-2, SWC-down and SWC-down 2) were reported within the adopted Site Assessment Criteria. Concentrations of key leachate indicators including ammonium and nitrate were below the ANZECC (2000) trigger values for marine waters in all Rocklow Creek sample locations:
- ➤ The existing monitoring locations and sampling regime (specified in EPL 5984) is generally considered to provide a suitable assessment of surface water, leachate and groundwater conditions;
- Surface gas methane monitoring reported satisfactory results all within the adopted assessment criteria;
- Gas accumulation monitoring reported satisfactory results for all buildings within 250m of deposited waste;
- ➤ Dust deposition gauges recorded satisfactory results below the guidelines provided in AS3580.10.1. Monitoring should continue in accordance with EPL 5984 requirements;
- Flare temperature data indicated a downward trend in operating temperatures throughout the quarter.
- Average weekly operating temperatures at the Flare fell below the EPL Lower Limit of 760 degrees on six (6) occasions, once (1) in April, twice (2) in May and three times (3) in June.
- ➤ Based on this review of the quarterly June 2021 monitoring period, contaminants associated with the landfill cell, leachate dam/s and general site uses are considered to be relatively consistent with the range of historical results;
- Should any change in Site conditions or incident occur which causes a potential environmental impact, a suitable environmental professional should be engaged to further assess the Site and consider requirements for any additional monitoring; and
- This report must be read in conjunction with the attached Statement of Limitations.

12.0 LIMITATIONS

This report and the associated services performed by ENRS are in accordance with the scope of services set out in the contract between ENRS and the Client. The scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

ENRS derived the data in this report primarily from visual inspections, examination of available records, interviews with individuals with information about the site, and if requested, limited sample collection and analysis made on the dates indicated. In preparing this report, ENRS has relied upon, and presumed accurate, certain information provided by government authorities, the Client and others identified herein. The report has been prepared on the basis that while ENRS believes all the information in it is deemed reliable and accurate at the time of preparing the report, it does not warrant its accuracy or completeness and to the full extent allowed by law excludes liability in contract, tort or otherwise, for any loss or damage sustained by the Client arising from or in connection with the supply or use of the whole or any part of the information in the report through any cause whatsoever.

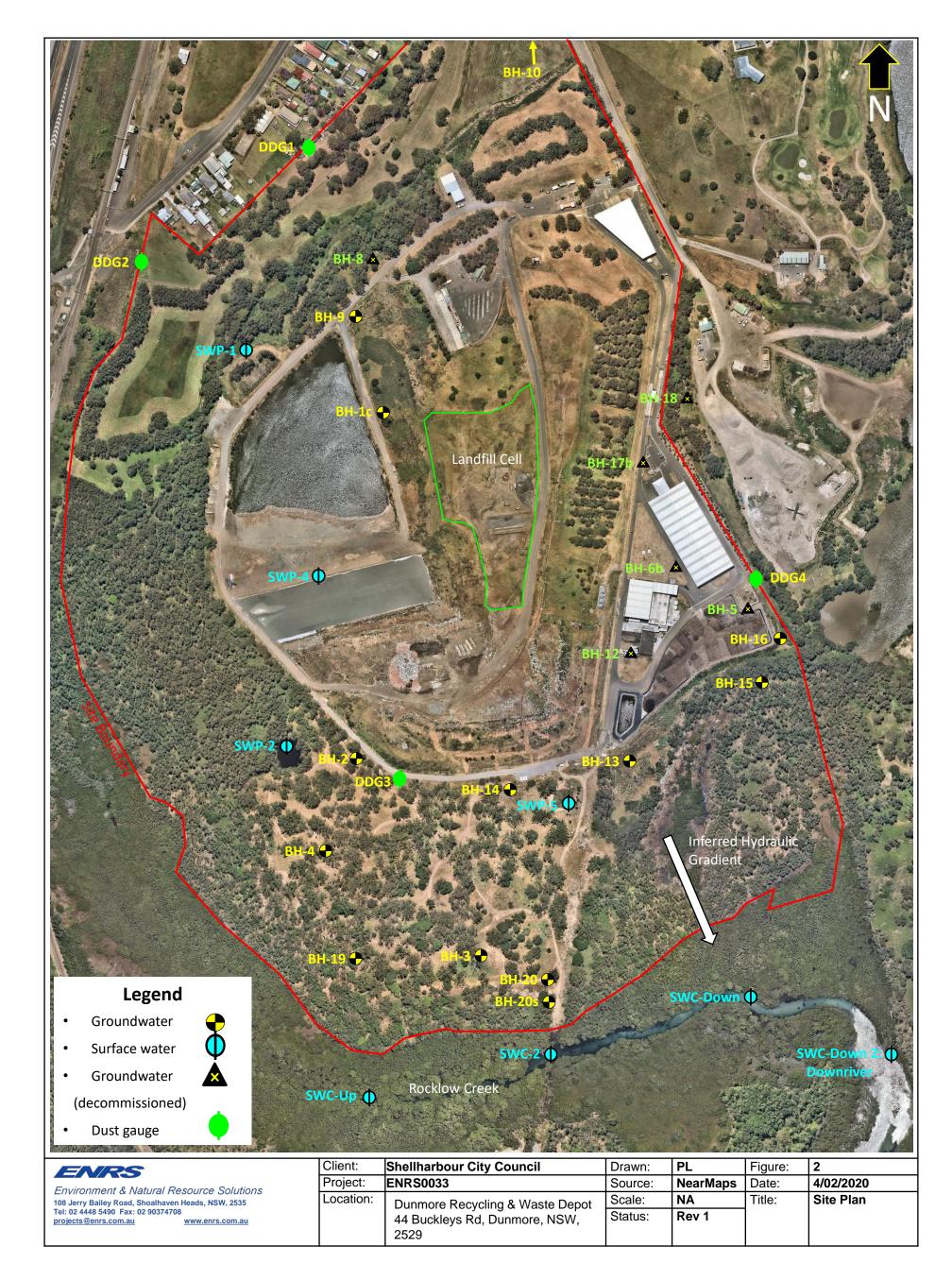
Limitations also apply to analytical methods used in the identification of substances (or parameters). These limitations may be due to non-homogenous material being sampled (i.e. the sample to be analysed may not be representative), low concentrations, the presence of 'masking' agents and the restrictions of the approved analytical technique. As such, non-statistically significant sampling results can only be interpreted as 'indicative' and not used for quantitative assessments.

The data, findings, observations, conclusions and recommendations in the report are based solely upon the state of the site at the time of the investigation. The passage of time, manifestation of latent conditions or impacts of future events (e.g. changes in legislation, scientific knowledge, land uses, etc) may render the report inaccurate. In those circumstances, ENRS shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of the report.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between ENRS and the Client. ENRS accepts no liability or responsibility whatsoever and expressly disclaims any responsibility for or in respect of any use of or reliance upon this report by any third party or parties.

It is the responsibility of the Client to accept if the Client so chooses any recommendations contained within and implement them in an appropriate, suitable and timely manner.

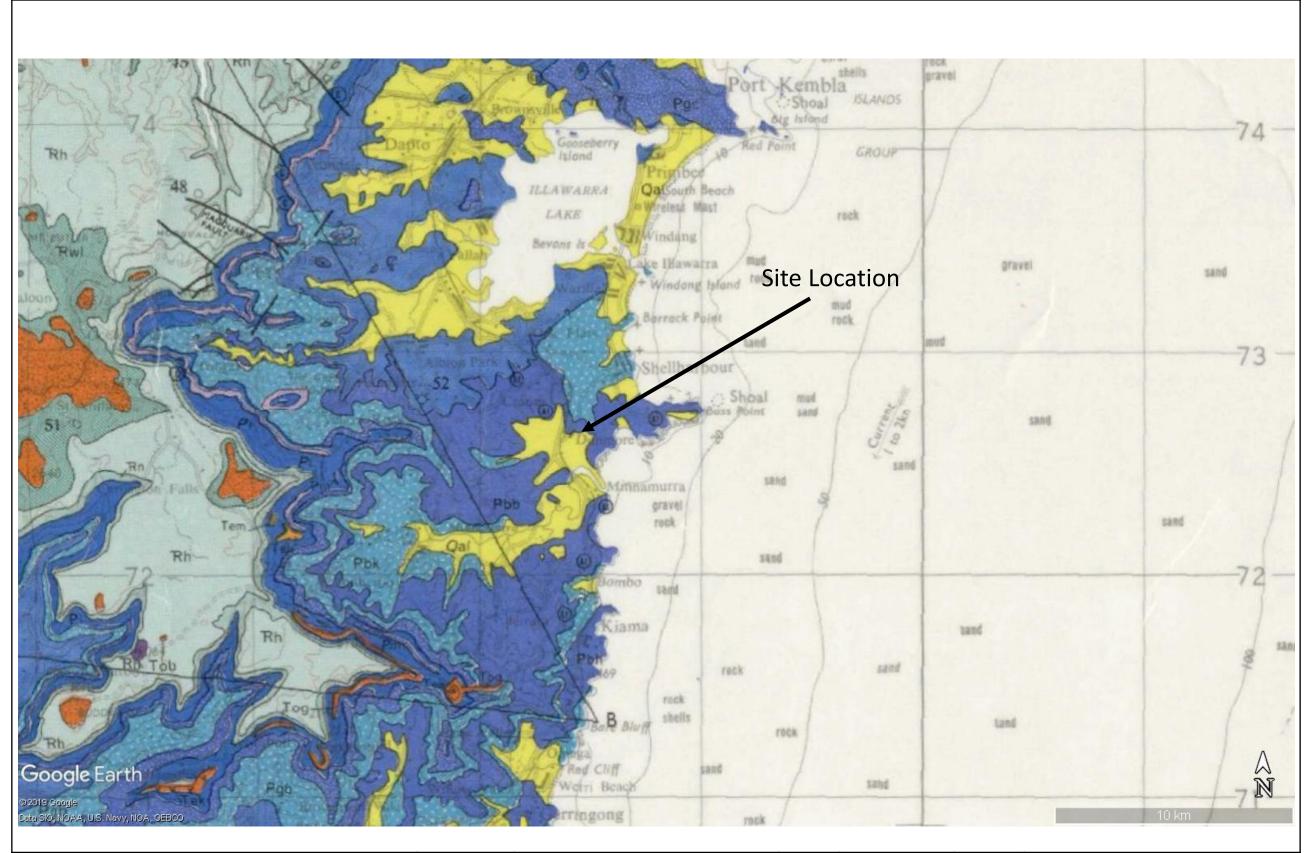
13.0 REFERENCES


- ANZECC (1996). Guidelines for the Laboratory Analysis of Contaminated Materials.
- ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment & Conservation Council. ISBN 09578245 0 5 (set).
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia.
- Australian Government (2011) National Health & Medical Research Council. National Resource Management Ministerial Council. National Water Quality Strategy. Australian Drinking Water Guidelines.
- Australian Standard AS 3580.10.1. Methods for sampling and analysis of ambient air; method 10.1- Determination of particulate matter Deposited matter Gravimetric method
- Environmental Earth Sciences (2018) Annual Report 2018- Environmental Monitoring at the Dunmore Recycling and Waste Depot, Dunmore, New South Wales
- NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure.
- Netherlands (1994) Environmental Quality Objectives in the Netherlands. Ministry of Housing, Spatial Planning and the Environment, Netherlands Government. ISBN 90-6092-783-4.
- NSW Department of Environment and Climate Change (2009a). Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination
- NSW EPA (1995) Sampling Design Guidelines. ISBN 0-7310-3756-1.
- NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW Department of Environment and Conservation (1997). Guidelines for the Assessment and Management of Groundwater Contamination.
- NSW EPA (1996) Environmental Guidelines: Solid Waste Landfills. ISBN 073103774 X
- NSW EPA (2016) Environmental Guidelines: Solid Waste Landfills (2nd Edition). ISBN 978 1 76039 350 2
- NSW EPA (Nov. 2020) Environmental Protection Licence (EPL) 5984
- NSW EPA (Dec. 2017) Environmental Protection Licence (EPL) 12903
- NSW Government (1997). Protection of the Environment Operations Act.
- NSW Government (2005). Protection of the Environment (Waste) Regulation.
- NSW Landcom (2008). Managing Urban Stormwater: Soils and Construction, Volume 2B Waste Landfills.

FIGURES

Figure 2: Sampling Points & Site Plan

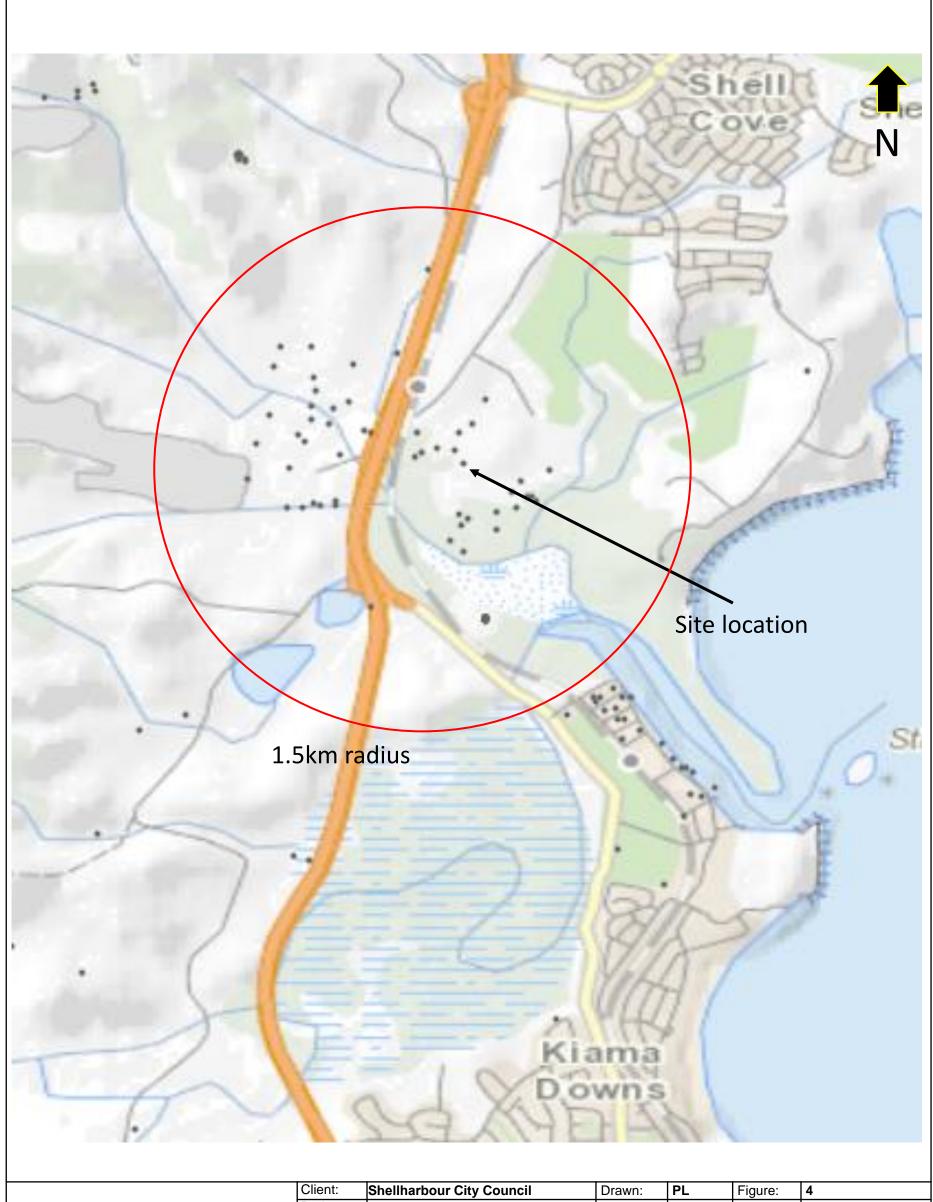
Figure 3: Surface Methane Gas Sample Transects


Environment & Natural Resource Solutions

108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535 Tel: 02 4448 5490 Fax: 02 90374708 projects@enrs.com.au www.enrs.com.au

Client:	Shellharbour City Council	Drawn:	PL	Figure:	3
Project:	ENRS0033	Source:	SixMaps	Date:	16/01/2020
Location:	Dunmore Recycling & Waste Depot 44 Buckleys Rd, Dunmore, NSW, 2529	Scale:	NA		Surface Gas
		Status:	Rev 1		Sample transects

Figure 4: Regional Geology


Environment & Natural Resource Solutions

108 Jerry Bailey Road, Shoalhaven Heads, NSW, 2535 Tel: 02 4448 5490 Fax: 02 90374708 projects@enrs.com.au www.enrs.com.au

Pro	Client:	Shellharbour City Council	Drawn:	PL	Figure:	4
	Project:	ENRS0033	I SOURCE.	Geological Survey of NSW	Date:	16/01/2020
		Dunmore Recycling & Waste Depot	Scale:	See figure	Title:	Site Geology
	Location:	44 Buckleys Rd, Dunmore, NSW, 2529	Status:	Rev 1		

Figure 5: Registered Bores

ENRS	
Environment & Natura	al Resource Solution
108 Jerry Bailey Road, Shoall Tel: 02 4448 5490 Fax: 02 903	haven Heads, NSW, 2535 374708
projects@enrs.com.au	www.enrs.com.au

Client.	Shellnarbour City Council	Drawn:	PL	Figure:	4
Project:	ENRS0033	Source:	NSW	Date:	16/01/2020
			Office of		
			Water		
Location:	Dunmore Recycling & Waste Depot	Scale:	NA	Title:	Registered Bores
	44 Buckleys Rd, Dunmore, NSW,	Status:	Rev 1		
	2529				

TABLES

Table 9: Water Quality Results

Comparison of Quarterly Monitoring Results Against Site Assessment Criteria

										Ou	artorly	v Wat					I Co						d Was	te Depo											
GII e -T	rigger Values for Freshw	vater (Protection of 95% o	of Species) ^A	_		l .	_		1.9	. Qu	artori,		0.9 (pH 8	0.0 (nH		0.7	0.7					ily all							_		6.5 - 8.5	2200			
		Water (Protection of 95%		_				_	-	-			0.91 (pH	0.91 (pH	_		-		_		-							_	_	_		-			
			Health	_				_	0.5			1.5	8)	8)	3	50	3		_	_							_	_	_	_	6.5 - 8.5	_			
	lian Drinking Water nes (2018) ^c		Aesthetic	250	-		180	-	0.1	0.3	0.3		0.5	0.5	-	-	-		-				-	250 -		-	5	-	-		6.5 - 8.5	-			
	Sample No.		Date Sampled	Chloride	Calcium	Magnesium	Sodium	Potassium	Manganese	Total Iron	Dissolved Iron	Fluoride	Ammonia as N	Ammonium as N	Nitrite as N	Nitrate as N	Nitrite + Nitrate as N	Total Organic Carbon	Biochemical Oxygen Demand	Hydroxide Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Bicarbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulfate as SO4 - Turbidimetric	Discolved	Suspended Solids (SS	Turbidity	Total Anions	Total Cations	Ionic Balance	Ħ	Electrivcal Conductivity	Temperature	Depth to Water (mbgl TOC)	Comments
		EPA No.	Units Laboratory PQL	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 0.001	mg/L 0.05	mg/L 0.05	mg/L 0.1	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 0.01	mg/L 1	mg/L 2	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L mg				meq/L 0.01	meq/L 0.01	meq/L 0.01	pH 0.01	μS/cm 1	°C 0.1	mbgl -	-
	BH-1c	3	16/03/2021	865	143	-	-	207	0.118	-	13.10	0.2	318.00	-	<0.01	<0.01	<0.10	168	-	<1	<1	1630	1630	<10 -	-	-	-	-	-	-	7.00	7080	24	2.93	-
	BH-3	5	16/03/2021	155	156	-	-	32	0.098	-	0.29	0.2	15.60	-	0.08	11.60	11.70	11	-	<1	<1	259	259	97 -	-	-	-		-	-	7.20	1430	18.7	3.01	-
	BH-4	6	16/03/2021	227	233	-	-	17	0.223	-	5.22	<0.1	10.80	-	<0.01	<0.01	<0.01	21	-	<1	<1	411	411	172 -	-	-	-	-	-	-	7.60	2090	19	4.21	-
	BH-9	18	16/03/2021	630	285	-	-	74	0.467	-	5.30	0.4	98.80	-	<0.01	<0.01	<0.01	91	-	<1	<1	1050	1050	98 -	-	-	-	-	-	-	6.90	5000	17.3	2.86	-
	BH-12r	17	16/03/2021	275	239	-	-	84	0.527	-	11.20	0.2	6.68	-	<0.01	0.49	0.49	24	-	<1	<1	351	351	185 -	-	-	-	-	-	-	6.70	2270	21.8	4.19	-
water	BH-13	10	16/03/2021	118	174	-	-	18	0.146	-	1.10	0.2	1.48	-	<0.01	5.20	5.20	18	-	<1	<1	369	369	139 -	-	-	-	-	-	-	6.70	1490	20.7	4.17	-
Groundwater	BH-14	11	16/03/2021	102	102	-	-	24	0.062	-	0.09	0.5	0.12	-	0.20	32	32.20	35	-	<1	<1	190	190	134 -	-	-	-	-	-	-	6.40	1320	21.4	4.58	-
	BH-15	7	16/03/2021	527	83	-	-	232	0.248	-	6.34	0.2	20.40	-	<0.01	0.01	0.01	34	-	<1	<1	187	187	434 -	-	-	-	-	-	-	6.90	3260	15.78	0.7	-
	BH-18	25	16/03/2021	10	33	-	-	4	0.051		0.96	0.1	0.16	-	<0.01	<0.01	<0.01	2	-	<1	<1	78	78	4 -	-	-	-	-	-	-	6.70	259	20.7	2.03	-
	BH-19	16	16/03/2021	200	166	-	-	25	0.120	-	1.05	0.2	4.77	-	<0.01	0.05	0.05	18	-	<1	<1	285	285	200 -	-	-	-	-	-	-	7.10	1830	18.8	4.39	-
	BH-21	23	16/03/2021	338	127	-	-	20	0.321		0.93	0.3	4.28	-	<0.01	0.01	0.01	31	-	<1	<1	315	315	346 -	-	-	-	-	-	-	7.10	2570	21.9	1.81	
	BH-22	24	16/03/2021	234	138	-	-	26	0.096		0.71	0.3	1.38		<0.01	<0.01	<0.01	23	-	<1	<1	356	356	222 -	-	-	-	-	-	-	7.40	2070	19.1	2.46	
Surface Water	SWP-1	1	17/03/2021	352	32	53	314	14	-	0.29	0.22	0.4	0.22	0.22	<0.01	<0.01	<0.01	16	-	<1	<1	256	256	234 -		<5	2.7	19.90	21.50	3.76	7.40	-	-	-	-
• • •	SWC-up	20	17/03/2021	2230	81	143	1180	45	-	0.80	<0.05	0.3	0.14	0.14	<0.01	0.29	0.29	5	-	<1	<1	85	85	358 -		14	14.0	72.00	68.30	2.68	7.40	-	-	-	-
Creek	SWC-2	19	17/03/2021	2270	89	170	1410	54	-	0.75	0.10	0.3	0.14	0.14	<0.01	0.28	0.28	6	-	<1	<1	92	92	411 -		<5	-	87.10	81.10	3.55	7.50	-	-	-	-
Rocklow	SWC-down	21	17/03/2021	2900	91	177	1480	57	-	0.66	<0.05	0.3	0.18	0.18	<0.01	0.28	0.28	7	-	<1	<1	82	82	419 -		<5	12.8	92.20	84.50	4.08	7.50	-	-	-	-
œ	SWC-down 2	22	17/03/2021	3320	91	206	1740	66	-	0.65	<0.05	0.3	0.11	0.11	<0.01	0.26	0.26	3	-	<1	<1	102	102	476 -		15	12.3	106.00	99.30	3.07	7.50	-	-	-	-
eachate.	Leachate Tank LP1	2	17/03/2021	1420	73	-	-	525	0.476	1.25	-	0.4	1610	-	<0.10	<0.10	<0.10	869	-	<1	<1	6470	6470	<10 3.5	6 46	.6 -	-		-	-	7.70	16700	25	-	-
Д А В	Investigation levels apply to ty ANZG 2018 - pH Upper and Lo	/ pical slightly-moderately distured over Limit for NSW Lowland Riv	urbed systems. Trigge vers (Table 3.3.2).	r Levels for	95% of spe	ecies. See A	NZECC & A	ARMCANZ (2	2000) for gui	idance on a	pplying the	se levels to	o different e	cosystem co	onditions. A	lso the san	nes as the N	EPM (2013)) EILs.					1			-1	I	1	1	1				

Page 1 of 1 ENRS0033_DM_Water Table of Results_Q3 2021

BANZG 2018 - pH Upper and Lower Limit for NSW Lowland Rivers (Table 3.3.2).

Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2018).

NEPM (2013 Table 14(4) Groundwater HSLs for vapour intrusion (Sand Zm-4m)

Nether (2013 Table 14(4) Groundwater HSLs for vapour intrusion (Sand Zm-4m)

Nether (1914) Guidelines for Assessing Service Station Sites. Replaced by the Technical Note for Investigation of Service Station Sites (EPA;2014).

Former NSW EPA (1994) Guidelines for Assessing Service Station Sites. Replaced by the Technical Note for Investigation of Service Station Sites (EPA;2014).

Max 3320 285 206 1740 525 1 2 13

Mean 912.1 130.2 134.8 1080.3 100.6 0.2 0.8 3.3

APPENDICES

Appendix A EPL 5984 Sampling Point Summary (NSW EPA, 27/11/2020)

Water & Land

EPA Point	Туре	Site ID	Description
1	Overflow drain	SWP1	Catch drain collecting overflows from Sediment Dams 1 & 2 and labelled SWP1 on the drawing titled "Shellharbour City Council - "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
2	Leachate monitoring	LP1	Leachate tank labelled LP1 on the drawing titled "Shellharbour City Council - Dunmore, NSW – Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
3	Groundwater monitoring	BH1c	BH1c - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
5	Groundwater monitoring	BH3	BH3 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
6	Groundwater monitoring	BH4	BH4 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
7	Groundwater monitoring	BH15	BH15 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
10	Groundwater monitoring	BH13	BH13 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
11	Groundwater monitoring	BH14	BH14 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
16	Groundwater monitoring	BH19	BH19 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
17	Groundwater monitoring	BH12R	BH12R - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
18	Groundwater monitoring	BH9	BH9 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
19	Surface Water Monitoring	SWC-2	SWC_2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW - Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
20	Surface Water Monitoring	SWC-UP	SWC_UP - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW – Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
21	Surface Water Monitoring	SWC- DOWN	SWC_DOWN - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW – Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
22	Surface Water Monitoring	SWC- DOWN2	SWC_DOWN2 - as shown on the drawing titled "Shellharbour City Council - Dunmore, NSW – Site Layout - Figure no. 1" dated July 2019 (EPA Ref. no. DOC19/1027702).
23	Groundwater Monitoring	BH21	BH21 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
24	Groundwater monitoring	BH22	BH22 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).
25	Groundwater monitoring	BH18	BH18 - as shown on drawing titled "Monitoring Point Location Plan - Dunmore Recycling and Waste Depot - EPL No. 5984" prepared by Cardno and attached to correspondence dated 7 April 2020 (EPA ref. no. DOC20/317779).

Air

EPA Point	Туре	Site ID	Description
12	Surface Gas Monitoring	General Site	Above areas where intermediate or final cover has been placed
13	Gas Accumulation Monitoring	Buildings	Inside all buildings within 250 metres of deposited waste
14	Discharge to air Air emissions monitoring	Flare	Landfill Gas Flare as shown on Drawing No. M7494-02-E1, dated 15 October 2015 (EPA Reference DOC15/415378)

Appendix B

Laboratory Field Sheets, Chain of Custody (COC) & Certificates of Analysis (COA) – Water Samples

CLIENT:

Shellharbour City Council
Dunmore Quarterly Ground Waters EPL

Ground and Surface Water Field Sheet

D
N
0,

SWL	Test Name EC FLXADD OPH Temp - degrees C	Trip Blank	DI-Water Blank	Field Duplicate	BH22	BH18	BH19R	BH15	BH14	BH13	BH12R	вн9	ВН4	внз	BH1C		Sample ID
	t Used		1	2 NA	Point 24	Point 23	Point 16	Toint \	Point 11	Point 10	Point 17	Point 18	Point 6	Point 5	Point 3		EPA Points
14	Equip No.	4	,				-				1	24	5		-/ 6%	17.731	Sampling Date
	Cal Date 16.6.21 4/21	13:20	8:20.	52:8	9:20	9:30	12:55	الذعاه	10100	11:10	10:25	10:30	1010	12.0	3	2.00	Sample Time
	Cal By																Bottle Type
L		7.06	7.03	7.02	-		6.74	7.14/1	/		1	101			F	7.02/7	рН
Form Pa		42		2000	1900	2573	129	1830	3260	1916/	1490	1269/	8000	2000	1423	7086	EC us/cm
Form Page 1 of 1		(1	1 8	, 1	1.81	2.03	4.39	000	4.58	417	1P1.4	2.86	15.4	301	2.93	SWL - M
		7.80	. 15.27	15.93			_	18.81		121.35	20.71	21.75	17.34	19.02	18.72	24.04	Temp - degrees C
		Ç															Bore Hole Purge Date
2					3	200	20	20.	'n	10	0	20:	<u>a</u>	20	8	20	Volume removed before sampling (L)
		4							8	×							Sampling Device Rinsed Before Use
			01	10													
Date Approv	1 72-		2. 6	2.106								9					Comments
Date Approved 21/3/2012			2. 200 A	00					**								

Form Page 1 of 1

Shellharbour City Council

Dunmore Quarterly Ground Waters

Ground and Surface Water Field Sheet

Sample ID	Sampling Date	Sample Time	Bottle Type	рН	EC - us/cm	SWL - M	Temp degrees C	Bore Hole Purge Date	Volume removed before sampling (L)	Sampling Device Rinsed Before Use	Comments
BHA * SHZ	15.6.21	10:38		7.01	2760	3.67	22:27		20.		
	J. Sale	12:05		6.76	1044	2.79	21.16		20.		,
BH10		13:15		726	2091	0.64	17.86.	/	Ň		
BH16		14:00		7.07/	1,445/	35.0)	15.99	. /	7		(orp2 -130.6).
BH17R		11:45		18.9	252	3.19/	3.19.9	9/	20		
BH18R		13:40		7.49	3438	2.65	18.25	1	7.		
BH20		9:30	,	7.38/	1683/2.27	2.27	18.17	//	J.		
BH20s		9:40		7.46	1034	2.28	18.29	1 100	VI		
36				*			4.				
dupliante		9:30		7.37	8891	2.28.	85.81				201 201 201 201 201 201 201 201 201 201
DIWater black		8:00		7.08	1	1	14.85				
Field Blank block	P	9:00.		7.10.	1	!	14.43		/		
Trip Blank	-	15:00		7.03	۲. م	1	60.07				
Tooting Facinment Hood					4						

ħ,	
EWF	
Z Z	
58/1	
_	

Test Name

Equip No.

Cal Date

Cal By

Temp degrees C

4/2

CHAIN OF CUSTODY

ALS Laboratory: please tick →

CL Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Ph. 02 8784 8555 Eisamples.sydney@alsenviro.com ☐ Newcastle: 5 Rosegum Rd, Warabrook NSW 2304 Ph:02 4968 9433 E:samples.newcastle@alserwiro.com

EJ Brisbane: 32 Shand St. Stafford QLD 4053 Ph:07 3243 7222 Etsamples.brisbane@alsenviro.com FI Townsville: 14-15 Desma Ct. Bobie OLD 4818 Ph:07 4796 0600 E: townswille environmental@atsenviro.com Cl. Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E; samples melbourne@alsenviro.com FI Adelaide: 2-1 Burma Rd Pograka SA 5095 Ph: 08 8359 0890 E.adelaide@alsonviro.com

Cl Perth: 10 Hod Way. Malaga WA 6090 Ph: 08 9209 7655 E: samples.porth@alsenviro.com El Launceston: 27 Wellington St. Launceston TAS 7250 Ph: 03 6331 2158 E. launceston@alsenviro.com

CLIENT:	Shellharbour City Council	,	1	UND REQUIREMENTS :	Standard TAT (L	ist due date)) :				FOR	LABORATORY	USE ONLY (Circle)
OFFICE:	41 Burelli St WOLLONGONG NSW	V 2500	(Standard TAT e.g., Ultra Tra	may be longer for some tests ce Organics)	☐ Non Standard or	urgent TAT (List due da	te):					74 7 Yes 17 186 1 1 NA
PROJECT:	Dunmore Quarterly Surface Water	rs EPL	ALS QUOT	E NO.: WO/030/19 TEND	DER			COC SEQU	ENCE NUME	ER (Circle) Free recen	ice / frozen ice brick of?	spresentupon ves No NA
ORDER NUMBER:					,		cc	oc: 1 2	3 4	5 6		om Sample Temper	The state of the s
PROJECT MANAGER:	Joel Culton						o	F: 1 2	3 4	5 6	7 Other	comment	
SAMPLER: ()	about Duti	SAMPLER N	IOBILE:		RELINQUISHED BY			CEIVED BY:			RELINQUI	SHED BY:	RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORMA	AT (or defaul	t):	」 `	~*		Mou	W				
Email Reports to :					DATE/TIME:	. ــــ د		телже:			DATE/TIM	E:	DATE/TIME:
Email Invoice to :					16621	15:	25	16.6.21	13	(20			
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	SAL: CC reports to:											
ALS USE ONLY		LE DETAILS solid(S) Water(W)		CONTAINER INF	FORMATION				•	•		sted to attract suite p	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo			NT-1, NT-2A (lonic Balance)	TOC, NT-4, NH3, Total Mn	Dissolved and Total Fe	Turbidity	NH3, NH4 & NO3	TSS, TDS, TOC	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
,)	SWP1	16621 11:10	w			·	✓	· ·	✓				Field Tests - pH, EC, DO & Temp
ı	SWC_2	1 815	. w				1		✓		1	1	Field Tests - pH, EC, DO & Temp
3	SWC_UP	8:00					1		1	1	1	4	Field Tests - pH, EC, DO & Temp
4	SWC_DOWN	8.6	w	-			1		1	1	1	1	Field Tests - pH, EC, DO & Temp
7	SWC_DOWN_2	8.7.	w .		***************************************		1		✓	✓	*	*	Field Tests - pH, EC, DO & Temp
											Wollon	nmental Di	
											EV	Örder Refere V2102	627
V = VOA Vial HCI Preserve	P = Unpreserved Plastic; N = Nitric Preser d; VB = VOA Vial Sodium Bisulphate Prese Bottle; E = EDTA Preserved Bottles; ST = ;	erved; VS = VOA Vial Sulfuric Preser	rved; AV = Airfr	eight Unpreserved Vial SG = Su									eserved Glass;

CERTIFICATE OF ANALYSIS

Work Order : **EW2102627** Page : 1 of 5

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Surface Water EPL Date Samples Received : 16-Jun-2021 15:20

Order number : 130985 Date Analysis Commenced : 16-Jun-2021

C-O-C number : ---- Issue Date : 24-Jun-2021 08:56

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER SURFACE WATER

No. of samples received : 5
No. of samples analysed : 5

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Aneta Prosaroski Client Liaison Officer Laboratory - Wollongong, NSW
Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW
Celine Conceicao Senior Spectroscopist Sydney Inorganics, Smithfield, NSW
Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 5 Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA016 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 5
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ng date / time	16-Jun-2021 11:10	16-Jun-2021 08:15	16-Jun-2021 08:00	16-Jun-2021 08:20	16-Jun-2021 08:25
Compound	CAS Number	LOR	Unit	EW2102627-001	EW2102627-002	EW2102627-003	EW2102627-004	EW2102627-005
•				Result	Result	Result	Result	Result
A005FD: Field pH								
рН		0.1	pH Unit	7.4	7.5	7.4	7.5	7.5
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	2070	8630	7330	9030	7560
EA015: Total Dissolved Solids dried a	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L		5270	4460	5460	6370
A025: Total Suspended Solids dried	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5	<5	14	<5	15
EA045: Turbidity								
Turbidity		0.1	NTU	2.7		14.0	12.8	12.3
EA116: Temperature								
Temperature		0.1	°C	11.4	10.5	10.9	10.4	10.4
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	256	92	85	82	102
Total Alkalinity as CaCO3		1	mg/L	256	92	85	82	102
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	234	411	358	419	476
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	352	2720	2230	2900	3320
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	62	89	81	91	100
Magnesium	7439-95-4	1	mg/L	53	170	143	177	206
Sodium	7440-23-5	1	mg/L	314	1410	1180	1480	1740
Potassium	7440-09-7	1	mg/L	14	54	45	57	66
EG020F: Dissolved Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.22	0.10	<0.05	<0.05	<0.05
EG020T: Total Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.29	0.75	0.80	0.66	0.65
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.3	0.3	0.3	0.3

Page : 4 of 5
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP1 Point 1	SWC_2 Point 19	SWC_UP Point 20	SWC_Down Point 21	SWC_DOWN_2 Point 22
		Sampli	ing date / time	16-Jun-2021 11:10	16-Jun-2021 08:15	16-Jun-2021 08:00	16-Jun-2021 08:20	16-Jun-2021 08:25
Compound	CAS Number	LOR	Unit	EW2102627-001	EW2102627-002	EW2102627-003	EW2102627-004	EW2102627-005
				Result	Result	Result	Result	Result
EK055G: Ammonia as N by Discrete An	alyser - Continued							
Ammonia as N	7664-41-7	0.01	mg/L	0.22	0.14	0.14	0.18	0.11
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	0.01	mg/L	0.22	0.14	0.14	0.18	0.11
EK057G: Nitrite as N by Discrete Analy	ser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analy	/ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.28	0.29	0.28	0.26
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.28	0.29	0.28	0.26
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	19.9	87.1	72.0	92.2	106
Ø Total Cations		0.01	meq/L	21.5	81.1	68.3	84.9	99.3
ø Ionic Balance		0.01	%	3.76	3.55	2.68	4.08	3.07
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	16	6	5	7	3
EP025FD: Field Dissolved Oxygen								
Dissolved Oxygen		0.01	mg/L	2.88	8.90	9.00	9.20	9.01

Page : 5 of 5 Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity

(WATER) EP005: Total Organic Carbon (TOC) (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

(WATER) EK055G-NH4: Ammonium as N by DA

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EN055: Ionic Balance

(WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) EK040P: Fluoride by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations

(WATER) EA015: Total Dissolved Solids dried at 180 \pm 5 °C

QUALITY CONTROL REPORT

· EW2102627 Work Order Page : 1 of 7

SHELL HARBOUR CITY CENTRE NSW. AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address Address : LAMERTON HOUSE, LAMERTON CRESCENT : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary Pl. North Nowra 2541

· 24-Jun-2021

Australia NSW Australia

Telephone Telephone : +61 2 4225 3125

Date Samples Received Project : Dunmore Quarterly Surface Water EPL : 16-Jun-2021 **Date Analysis Commenced** : 16-Jun-2021

Order number : 130985

Sampler · Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER SURFACE WATER

No. of samples received : 5 No. of samples analysed : 5

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aneta Prosaroski	Client Liaison Officer	Laboratory - Wollongong, NSW
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 7
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EA015: Total Dissol	lved Solids dried at 180 ±	5 °C (QC Lot: 3748552)								
EW2102627-002	SWC_2 Point 19	EA015H: Total Dissolved Solids @180°C		10	mg/L	5270	5290	0.5	0% - 20%	
EA025: Total Suspe	ended Solids dried at 104 :	± 2°C (QC Lot: 3748551)								
EW2102627-002	SWC_2 Point 19	EA025H: Suspended Solids (SS)		5	mg/L	<5	6	0.0	No Limit	
EA025: Total Suspe	ended Solids dried at 104 :	± 2°C (QC Lot: 3748562)								
ES2122614-004	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	5	5	0.0	No Limit	
ES2122961-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	8	9	15.4	No Limit	
EA045: Turbidity (C	QC Lot: 3742480)									
ES2121822-001	Anonymous	EA045: Turbidity		0.1	NTU	7.8	8.2	5.3	0% - 20%	
ES2122225-013	Anonymous	EA045: Turbidity		0.1	NTU	1.0	1.1	0.0	0% - 50%	
EA045: Turbidity (C	QC Lot: 3742481)									
EW2102627-003	SWC_UP Point 20	EA045: Turbidity		0.1	NTU	14.0	14.0	0.0	0% - 20%	
ED037P: Alkalinity I	by PC Titrator (QC Lot: 3	747673)								
ES2122840-015	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit	
ES2122840-011	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit	
ED041G: Sulfate (Tu	urbidimetric) as SO4 2- by	DA (QC Lot: 3740060)								
ES2122494-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	7	7	0.0	No Limit	
EW2102629-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	17	17	0.0	0% - 50%	

Page : 3 of 7
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED045G: Chloride	by Discrete Analyser (QC L	ot: 3740061)							
ES2122494-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	9	9	0.0	No Limit
EW2102629-004	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	97	98	0.0	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot: 37	43300)							
ES2122303-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	27	27	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	23	23	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	38	38	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.0	No Limit
ES2122499-004	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	2	2	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	1	1	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	302	302	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	10	10	0.0	No Limit
ED093F: Dissolved	Major Cations (QC Lot: 37	43304)							
EW2102627-005	SWC_DOWN_2 Point 22	ED093F: Calcium	7440-70-2	1	mg/L	100	89	12.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	206	182	12.5	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	1740	1550	11.6	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	66	60	9.9	0% - 20%
EW2102639-008	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	2	2	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	2	2	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	14	14	0.0	0% - 50%
		ED093F: Potassium	7440-09-7	1	mg/L	1	1	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC Lot	: 3743301)							
ES2122389-002	Anonymous	EG020A-F: Iron	7439-89-6	0.05	mg/L	0.45	0.46	2.5	No Limit
ES2122499-004	Anonymous	EG020A-F: Iron	7439-89-6	0.05	mg/L	0.34	0.33	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC Lot	: 3743305)							
EW2102627-005	SWC_DOWN_2 Point 22	EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EW2102639-008	Anonymous	EG020A-F: Iron	7439-89-6	0.05	mg/L	0.09	0.09	0.0	No Limit
EG020T: Total Met	als by ICP-MS (QC Lot: 374								
EW2102628-003	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	2.36	2.29	3.1	0% - 20%
ES2122455-001	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	1.45	1.45	0.0	0% - 20%
FK040P: Fluoride l	by PC Titrator (QC Lot: 3747								
ES2122840-015	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.0	No Limit
ES2122840-011	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
	as N by Discrete Analyser		.5561	J	3. =	5	J	0.0	
ES2122455-001	Anonymous	•	7664-41-7	0.01	mg/L	62.2	59.8	3.8	0% - 20%
ES2122455-001 ES2122500-001	Anonymous	EK055G: Ammonia as N EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.36	1.35	0.7	0% - 20%
	-		7004-41-7	0.01	IIIg/L	1.50	1.00	0.7	0 /0 - 20 /0
	N by Discrete Analyser (Q		44707 07 0	0.01		.0.01	-0.04	0.0	NI- 11 9
ES2122494-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EW2102629-004	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit

Page : 4 of 7
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 3747071)											
ES2122348-017	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.28	0.28	0.0	0% - 20%		
EW2102627-003	SWC_UP Point 20	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.29	0.29	0.0	0% - 20%		
EP005: Total Organi	c Carbon (TOC) (QC Lot: 37	42808)									
ES2122340-006	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	2	86.8	No Limit		
ES2122634-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	2	0.0	No Limit		

Page : 5 of 7
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR Unit		Result	Concentration	LCS	Low	High
EA015: Total Dissolved Solids dried at 180 ± 5 °C	(QCLot: 3748552)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	96.6	87.0	109
_				<10	293 mg/L	109	75.2	126
				<10	2835 mg/L	102	83.0	124
A025: Total Suspended Solids dried at 104 ± 2°C	(QCLot: 3748551)							
A025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	96.0	83.0	129
, ,			-	<5	1000 mg/L	96.7	82.0	110
				<5	463 mg/L	104	83.0	118
A025: Total Suspended Solids dried at 104 ± 2°C	(QCLot: 3748562)							
A025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	114	83.0	129
(<5	1000 mg/L	101	82.0	110
				<5	463 mg/L	108	83.0	118
:A045: Turbidity (QCLot: 3742480)								
A045: Turbidity		0.1	NTU	<0.1	40 NTU	102	91.0	105
:A045: Turbidity (QCLot: 3742481)								
A045: Turbidity (QCLOt: 3742461)		0.1	NTU	<0.1	40 NTU	102	91.0	105
		0.1	1410	-0.1	101110	102	01.0	100
D037P: Alkalinity by PC Titrator (QCLot: 374767			ma/l		200 ma/l	100	01.0	111
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L 50 mg/L	109 100	81.0 80.0	120
					50 Hig/L	100	80.0	120
D041G: Sulfate (Turbidimetric) as SO4 2- by DA	·				"			
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	108	82.0	122
				<1	500 mg/L	105	82.0	122
ED045G: Chloride by Discrete Analyser (QCLot: 3								
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	103	80.9	127
				<1	1000 mg/L	102	80.9	127
D093F: Dissolved Major Cations (QCLot: 374330	00)							
D093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	99.8	80.0	114
D093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	98.4	90.0	116
D093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	98.1	82.0	120
:D093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	98.4	85.0	113
:D093F: Dissolved Major Cations (QCLot: 374330)4)							
D093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	98.9	80.0	114
D093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	96.6	90.0	116
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	96.7	82.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	97.8	85.0	113

Page : 6 of 7
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER				Method Blank (MB)					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 3743301))								
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	99.0	82.0	112	
EG020F: Dissolved Metals by ICP-MS (QCLot: 3743305)								
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	98.0	82.0	112	
EG020T: Total Metals by ICP-MS (QCLot: 3743614)									
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	95.5	85.0	117	
EK040P: Fluoride by PC Titrator (QCLot: 3747675)									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	99.8	82.0	116	
EK055G: Ammonia as N by Discrete Analyser (QCLot:	3747072)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	105	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 374	10062)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	99.4	82.0	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser (QCLot: 37	47071)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	103	91.0	113	
EP005: Total Organic Carbon (TOC) (QCLot: 3742808)									
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	90.3	72.0	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3740060)									
ES2122494-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	113	70.0	130			
ED045G: Chloride	by Discrete Analyser (QCLot: 3740061)									
ES2122494-001	Anonymous	ED045G: Chloride	16887-00-6	50 mg/L	104	70.0	130			
EK040P: Fluoride	by PC Titrator (QCLot: 3747675)									
ES2122840-005	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	78.0	70.0	130			
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 3747072)									
ES2122455-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	# Not	70.0	130			
					Determined					
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 3740062)									
ES2122494-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	106	70.0	130			
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 37	47071)								
ES2122348-017	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	112	70.0	130			

Page : 7 of 7
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Sub-Matrix: WATER	ub-Matrix: WATER					Matrix Spike (MS) Report					
						Acceptable l	Limits (%)				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EP005: Total Organ	EP005: Total Organic Carbon (TOC) (QCLot: 3742808)										
ES2122394-001	Anonymous	EP005: Total Organic Carbon		100 mg/L	99.4	70.0	130				

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EW2102627** Page : 1 of 8

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Telephone : +61 2 4225 3125
Project : Dunmore Quarterly Surface Water EPL Date Samples Received : 16-Jun-2021
Site : DUNMORE LANDFILL TENDER Issue Date : 24-Jun-2021

Sampler : Robert DaLio No. of samples received : 5
Order number : 130985 No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 8
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

ALS

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK055G: Ammonia as N by Discrete Analyser	ES2122455001	Anonymous	Ammonia as N	7664-41-7	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Middle Water					
Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	35	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	19	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation:	x = Holding	time bread	ch · ✓ :	= Within	holding time.
Evaluation.	<u> </u>	unie brea	GII. Y -	– vviliiiii i	noidina iline.

Matrix: WATER					Evaluation	: × = Holding time	breach; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005FD: Field pH								
Field Test Dummy Bottle (EN67 PK) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				16-Jun-2021		
EA010FD: Field Conductivity								
Field Test Dummy Bottle (EN67 PK) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				16-Jun-2021		
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H) SWC_2 - Point 19, SWC_Down - Point 21,	SWC_UP - Point 20, SWC_DOWN_2 - Point 22	16-Jun-2021				22-Jun-2021	23-Jun-2021	✓

Page : 3 of 8
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				22-Jun-2021	23-Jun-2021	✓
EA045: Turbidity								
Clear Plastic Bottle - Natural (EA045) SWP1 - Point 1, SWC_Down - Point 21,	SWC_UP - Point 20, SWC_DOWN_2 - Point 22	16-Jun-2021				17-Jun-2021	18-Jun-2021	✓
EA116: Temperature								
Field Test Dummy Bottle (EN67 PK) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				16-Jun-2021		
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				21-Jun-2021	30-Jun-2021	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				16-Jun-2021	14-Jul-2021	✓
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				16-Jun-2021	14-Jul-2021	✓
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				18-Jun-2021	14-Jul-2021	✓
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				18-Jun-2021	13-Dec-2021	✓

Page : 4 of 8
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Matrix: WATER					Evaluation	ı: x = Holding time	breach ; ✓ = Withi	n holding time.	
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021	18-Jun-2021	13-Dec-2021	✓	18-Jun-2021	13-Dec-2021	✓	
EK040P: Fluoride by PC Titrator									
Clear Plastic Bottle - Natural (EK040P) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				21-Jun-2021	14-Jul-2021	✓	
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK055G) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				21-Jun-2021	14-Jul-2021	✓	
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN 2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				16-Jun-2021	18-Jun-2021	✓	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	alvser								
Clear Plastic Bottle - Sulfuric Acid (EK059G) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				21-Jun-2021	14-Jul-2021	✓	
EP005: Total Organic Carbon (TOC)									
Amber TOC Vial - Sulfuric Acid (EP005) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				18-Jun-2021	14-Jul-2021	✓	
EP025FD: Field Dissolved Oxygen									
Field Test Dummy Bottle (EN67 PK) SWP1 - Point 1, SWC_UP - Point 20, SWC_DOWN_2 - Point 22	SWC_2 - Point 19, SWC_Down - Point 21,	16-Jun-2021				16-Jun-2021			

Page : 5 of 8
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **WATER**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type Analytical Methods Laboratory Duplicates (DUP) Alkalinity by PC Titrator	Method ED037-P EK055G	OC 2	ount Reaular	Actual	Rate (%) Expected	Evaluation	Quality Control Specification
Laboratory Duplicates (DUP)	ED037-P		Reaular	Actual	Expected	Evaluation	
		2					
Alkalinity by PC Titrator		2					
	EK055G		20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser		2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	4	30	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	13	15.38	10.00	√	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	24	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	5	20.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	3	26	11.54	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	18	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	35	5.71	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	30	6.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	6	24	25.00	15.00	1	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	5	60.00	15.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	26	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	35	5.71	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	30	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 8 Work Order : EW2102627

Total Organic Carbon

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) **Quality Control Specification** Evaluation Method Analytical Methods QC Regular Actual Expected Method Blanks (MB) - Continued Nitrite as N by Discrete Analyser 13 7.69 5.00 NEPM 2013 B3 & ALS QC Standard EK057G 1 Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser 1 18 NEPM 2013 B3 & ALS QC Standard 5.56 5.00 1 ED041G 2 Suspended Solids (High Level) 24 EA025H 8.33 5.00 NEPM 2013 B3 & ALS QC Standard 1 1 Total Dissolved Solids (High Level) 5 20.00 5.00 NEPM 2013 B3 & ALS QC Standard EA015H 1 Total Metals by ICP-MS - Suite A 19 EG020A-T 1 5.26 5.00 NEPM 2013 B3 & ALS QC Standard 1 Total Organic Carbon 1 20 5.00 NEPM 2013 B3 & ALS QC Standard 5.00 EP005 1 Turbidity 2 26 7.69 5.00 NEPM 2013 B3 & ALS QC Standard EA045 Matrix Spikes (MS) Ammonia as N by Discrete analyser EK055G 1 14 7.14 5.00 NEPM 2013 B3 & ALS QC Standard Chloride by Discrete Analyser 1 18 5.56 5.00 1 NEPM 2013 B3 & ALS QC Standard ED045G 0 Dissolved Metals by ICP-MS - Suite A 35 EG020A-F 0.00 5.00 NEPM 2013 B3 & ALS QC Standard × Fluoride by PC Titrator 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard EK040P 1 Nitrite and Nitrate as N (NOx) by Discrete Analyser 1 11 9.09 5.00 NEPM 2013 B3 & ALS QC Standard EK059G 1 Nitrite as N by Discrete Analyser 1 13 7.69 NEPM 2013 B3 & ALS QC Standard 5.00 EK057G 1 Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser 1 18 ED041G 5.56 5.00 1 NEPM 2013 B3 & ALS QC Standard Total Metals by ICP-MS - Suite A 0 19 0.00 NEPM 2013 B3 & ALS QC Standard EG020A-T 5.00 ×

5.00

5.00

NEPM 2013 B3 & ALS QC Standard

20

EP005

1

Page : 7 of 8
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)

Page : 8 of 8
Work Order : EW2102627

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water EPL

Analytical Methods	Method	Matrix	Method Descriptions
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Ammonium as N	EK055G-NH4	WATER	Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests - Port Kembla	EN67 PK	WATER	Field determinations as per methods described in APHA. The analysis is performed in the field by ALS samplers. ALS NATA accreditation apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

A
$\Delta I \leq 1$

CHAIN OF CUSTODY

ALS Laboratory: please tick >

EJ Sydney: 277 Woodpark Rd, Smithfield NSW 2176 Ph: 02 8784 8555 E:samples.sydney@alsenviro.com

□ Newcastla: 5 Rosegum Rd, Warabrook NSW 2304

• Ph.02 4968 9433 E-samples newcastla@alsenviro com

Ph.02 4968 9433 E-samples newcastla@alsenviro com

Ph.07 4796 0600 E: twwnstlle environmental@alsenviro com

☐ Brisbane: 32 Shand St, Stafford QLD 4053 Ph:07 3243 7222 E.samples.brisbane@alsenvim.com ☐ Townsville: 14-15 Desma Ct, Bohle QLD 4818

Cl. Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph.03 8549 9600 E: samples.melbourne@alsenviro.com

Adelaide: 2-1 Burma Rd, Pooraka SA 5095
 Ph: 08 8359 0890 E:adelaide@alsenviro.com

© Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E; samples perth@alsenviro.com

C) Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 93 6331 2158 E. launceston@alsenviro.com

	·											FOR L	ABORATO	RY USE O	NLY (Circle)	
IENT:	Shellharbour City Council			JND REQUIREMENTS: may be longer for some tests	Standard TAT (Lis							Custod	Seal Intact?		Yes	No
FICE:	41 Bureili St WOLLONGONG NSW	2500	rgent IAI (L	nt TAT (List due date): COC SEQUENCE NUMBER (Circle)						l frazenica t	ricks presen	fupan yes	No			
OJECT:	Dunmore Quarterly Surface Water	s	ALS QUOT	E NO.: WO/030/19 TENDI	<u> </u>							Fandon	s Sample Terr	iperatire on	Receipt	d i i
DER NUMBER:		<u> </u>					OF	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			6 7			1		
OJECT MANAGER:	Joel Culton				RELINQUISHED BY:			EIVED BY		-	REI	Economic Possibility	HED BY:		RECEIVED BY:	
MPLER: Robert	Dalio	SAMPLER M		<u> </u>	Rebent	a									·	
C emailed to ALS? (YES / NO)	EDD FORMA	T (or default	t):	DATE/TIME:		DATE/DME: DATE		TE/TIME	:		DATE/TIME:				
ail Reports to :					16.6%	15:2	i	6.6.21		15:20						
ail Invoice to :					10.671			0 0 0		13.00			,			
MMENTS/SPECIAL	HANDLING/STORAGE OR DISPOS	AL: CC reports to:													1	
	CAMEDI	E DETAILS		CONTAINER INF	CORMATION	1							ed to attract s		Additional Info	ormation
ALS USE ONLY		olid(S) Water(W)		CONTAINER INF	ORMATION	Whe	e Metals are re	quired, specify	otal (unfiltere	d bottle require	ed) or Disso	olved (field	filtered bottle red	quired).	O and an Block contom	vinont lovole
et e		<u> </u>													Comments on likely contaminant levels, dilutions, or samples requiring specific QC	
			}				1		윤		ŀ				analysis etc.	
									ota							
		DATE / TIME	MATRIX	TYPE & PRESERVA			8		l pu			٠				
LAB ID	SAMPLE ID	DATE / TIME	MAINA	(refer to codes belo	(BOTTLE	3	la v	BOD	g	>		03	≤			
							N. N.	- M	O Ve	1 5		≥ ≪	linit			
						155	NT-1, NT-2 (lonic Balance)	50	Dissolved and Total	Turbidity		NH4 & NO3	Alkalinity			
			1			\ \ \ \ \	1 2 5		<u> </u>		-				Field Tests	s - pH
1	SWP2	16621 10.30	- W			_		+				_			Field Tests	
7	SWP4 - Sand Mine Dam	10:55	w			1	✓			_					<u> </u>	<u> </u>
	SWP5	10.01	1 1			✓	1	1	1	•	′				Field Tests	s-pH
	SWF3	10.00	+				_				1					
					·		-	-	-	-+				 		
					-									<u> </u>		
	 												I	ļ	1	
									-					ental D	iudolon	
									_	_			vironme			
												446	Mork Ord	ry Ier Refer	rence ·	
							 						FW2	2102	2628 —	
									-				THE T T S.			
					TOTAL 10											
										Ainferial-4	Unprant					<u> —</u>
Vater Container Codes:	P = Unpreserved Plastic; N = Nitric Pres	erved Plastic; ORC = Nitric Presen	red ORC; SH=	Sodium Hydroxide/Cd Preserve	d; S = Sodium Hydroxide F	reserved Plas lass: H = H	tlc; AG = Amî 31 preserved f	ber Glass Unp Plastic; HS =	reserved; Al ICI preserve	· - Airreight d Speciation	onprest n bottle;				· Glas	SS;
VOA Vial HCI PreserveZinc Acetate Preserve	ved; VB = VOA Vial Sodium Bisulphate Pre ed Bottle; E = EDTA Preserved Bottles; ST	served; vs = voA viai suituric Pres = Sterile Bottle; ASS = Plastic Bag	for Acid Sulpha	ite Soils; B = Unpreserved Bag.									100 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12	ALESC STREET	1 pm 99400 5 × 5 * * * * * * * * * * * * * * * * *	

deplace 42 42263121

CERTIFICATE OF ANALYSIS

Work Order : **EW2102628** Page : 1 of 4

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Australia NSW Australia

: ---- Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Surface Water Date Samples Received : 16-Jun-2021 15:20

Order number : 130985 Date Analysis Commenced : 16-Jun-2021

C-O-C number : ---- Issue Date : 24-Jun-2021 08:56

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER SURFACE WATER

No. of samples received : 3
No. of samples analysed : 3

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Aneta Prosaroski Client Liaison Officer Laboratory - Wollongong, NSW
Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW
Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 4
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- EN055: Ionic Balance out of acceptable limits for sample EW2102628-#003 due to analytes not quantified in this report.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.4 Lakes and Reservoirs
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SWP2	SWP4 -	SWP5		
(Matrix: WATER)		0 "		40.10004.40.00	Sand Mine Dam	40.10004.40.00		
			ng date / time	16-Jun-2021 10:30	16-Jun-2021 10:55	16-Jun-2021 10:00		
Compound	CAS Number	LOR	Unit	EW2102628-001	EW2102628-002	EW2102628-003		
				Result	Result	Result		
EA005FD: Field pH							ı	I
pH		0.1	pH Unit	7.9	7.8	8.4		
EA025: Total Suspended Solids dried a	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5	<5	66		
EA045: Turbidity								
Turbidity		0.1	NTU	3.2	13.7	53.5		
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	741	390	2140		
Total Alkalinity as CaCO3		1	mg/L	741	390	2140		
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	212	277	74		
ED045G: Chloride by Discrete Analyse	r							
Chloride	16887-00-6	1	mg/L	363	372	662		
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	131	50	103		
Magnesium	7439-95-4	1	mg/L	56	55	57		
Sodium	7440-23-5	1	mg/L	310	344	468		
Potassium	7440-09-7	1	mg/L	37	10	325		
EG020F: Dissolved Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.27	<0.05	1.20		
EG020T: Total Metals by ICP-MS								
Iron	7439-89-6	0.05	mg/L	0.39	0.40	2.36		
EN055: Ionic Balance			-					
Ø Total Anions		0.01	meg/L	29.4	24.0	63.0		
Ø Total Cations		0.01	meg/L	25.6	22.2	38.5		
Ø Ionic Balance		0.01	%	7.05	3.92	24.1		
EP005: Total Organic Carbon (TOC)								1
Total Organic Carbon		1	mg/L		18	290		
EP030: Biochemical Oxygen Demand (3- =					
Biochemical Oxygen Demand		2	mg/L		<2	30		
Diodicinical Oxygen Demand			mg/L		'-			

Page : 4 of 4
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA045: Turbidity

(WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EG020T: Total Metals by ICP-MS (WATER) ED045G: Chloride by Discrete Analyser

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

(WATER) ED037P: Alkalinity by PC Titrator (WATER) ED093F: Dissolved Major Cations

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

(WATER) EN055: Ionic Balance

(WATER) EP005: Total Organic Carbon (TOC)

(WATER) EP030: Biochemical Oxygen Demand (BOD)

QUALITY CONTROL REPORT

· EW2102628 Work Order Page : 1 of 5

SHELL HARBOUR CITY CENTRE NSW. AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address Address : LAMERTON HOUSE, LAMERTON CRESCENT : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary Pl. North Nowra 2541

Australia NSW Australia

: 16-Jun-2021

· 24-Jun-2021

Telephone Telephone : +61 2 4225 3125

Date Samples Received Project : Dunmore Quarterly Surface Water : 16-Jun-2021 **Date Analysis Commenced**

Order number : 130985

Sampler · Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER SURFACE WATER

No. of samples received : 3 No. of samples analysed : 3

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Aneta Prosaroski Client Liaison Officer Laboratory - Wollongong, NSW Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Page : 2 of 5 Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA025: Total Suspe	nded Solids dried at 1	04 ± 2°C (QC Lot: 3747058)							
ES2122454-022	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	16	10	47.6	No Limit
ES2122485-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	148	162	8.9	0% - 20%
EA045: Turbidity (C	QC Lot: 3742481)								
EW2102627-003	Anonymous	EA045: Turbidity		0.1	NTU	14.0	14.0	0.0	0% - 20%
EA045: Turbidity (C	C Lot: 3745404)								
ES2122462-002	Anonymous	EA045: Turbidity		0.1	NTU	22.7	22.7	0.0	0% - 20%
EW2102656-001	Anonymous	EA045: Turbidity		0.1	NTU	<0.1	<0.1	0.0	No Limit
ED037P: Alkalinity b	y PC Titrator (QC Lot	: 3747673)							
ES2122840-015	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit
ES2122840-011	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit
ED037P: Alkalinity b	y PC Titrator (QC Lot	: 3747676)							
EW2102629-006	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	479	512	6.6	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	479	512	6.6	0% - 20%
EW2102634-005	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	351	387	9.7	0% - 20%

Page : 3 of 5
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED037P: Alkalinity b	by PC Titrator (QC Lot: 374	7676) - continued							
EW2102634-005	Anonymous	ED037-P: Total Alkalinity as CaCO3		1	mg/L	351	387	9.7	0% - 20%
ED041G: Sulfate (Τι	ırbidimetric) as SO4 2- by [OA (QC Lot: 3740060)							
ES2122494-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	7	7	0.0	No Limit
EW2102629-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	17	17	0.0	0% - 50%
ED045G: Chloride b	y Discrete Analyser (QC L	ot: 3740061)							
ES2122494-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	9	9	0.0	No Limit
EW2102629-004	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	97	98	0.0	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot: 374	43304)							
EW2102627-005	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	100	89	12.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	206	182	12.5	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	1740	1550	11.6	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	66	60	9.9	0% - 20%
EW2102639-008	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	2	2	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	2	2	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	14	14	0.0	0% - 50%
		ED093F: Potassium	7440-09-7	1	mg/L	1	1	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC Lot	: 3743305)							
EW2102627-005	Anonymous	EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EW2102639-008	Anonymous	EG020A-F: Iron	7439-89-6	0.05	mg/L	0.09	0.09	0.0	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lot: 374	3614)							
EW2102628-003	SWP5	EG020A-T: Iron	7439-89-6	0.05	mg/L	2.36	2.29	3.1	0% - 20%
ES2122455-001	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	1.45	1.45	0.0	0% - 20%
EP005: Total Organi	ic Carbon (TOC) (QC Lot: 3	3742808)							
ES2122340-006	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	2	86.8	No Limit
ES2122634-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	2	0.0	No Limit
EP030: Biochemica	Oxygen Demand (BOD) (0	QC Lot: 3742040)							
EW2102628-002	SWP4 - Sand Mine Dam	EP030: Biochemical Oxygen Demand		2	mg/L	<2	5	85.7	No Limit

Page : 4 of 5 Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 374	47058)									
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	110	83.0	129		
				<5	1000 mg/L	96.0	82.0	110		
				<5	463 mg/L	97.7	83.0	118		
EA045: Turbidity (QCLot: 3742481)										
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	102	91.0	105		
EA045: Turbidity (QCLot: 3745404)										
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	99.5	91.0	105		
ED037P: Alkalinity by PC Titrator (QCLot: 3747673)										
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	109	81.0	111		
					50 mg/L	100	80.0	120		
ED037P: Alkalinity by PC Titrator (QCLot: 3747676)										
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	108	81.0	111		
•			_		50 mg/L	104	80.0	120		
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3740	0060)									
	4808-79-8	1	mg/L	<1	25 mg/L	108	82.0	122		
				<1	500 mg/L	105	82.0	122		
ED045G: Chloride by Discrete Analyser (QCLot: 3740061)										
	6887-00-6	1	mg/L	<1	50 mg/L	103	80.9	127		
				<1	1000 mg/L	102	80.9	127		
ED093F: Dissolved Major Cations (QCLot: 3743304)										
	7440-70-2	1	mg/L	<1	50 mg/L	98.9	80.0	114		
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	96.6	90.0	116		
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	96.7	82.0	120		
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	97.8	85.0	113		
EG020F: Dissolved Metals by ICP-MS (QCLot: 3743305)										
	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	98.0	82.0	112		
EG020T: Total Metals by ICP-MS (QCLot: 3743614)										
	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	95.5	85.0	117		
EP005: Total Organic Carbon (TOC) (QCLot: 3742808)										
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	90.3	72.0	120		
EP030: Biochemical Oxygen Demand (BOD) (QCLot: 3742040)										
EP030: Biochemical Oxygen Demand EP030: Biochemical Oxygen Demand		2	mg/L	<2	200 mg/L	82.5	74.0	112		
Li 000. Diodieniicai Oxygen Demailu			9, L	·£	200 mg/L	02.0	,	- 12		

Page : 5 of 5 Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable L	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3740060)						
ES2122494-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	113	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 3740061)						
ES2122494-001	Anonymous	ED045G: Chloride	16887-00-6	50 mg/L	104	70.0	130
EP005: Total Orga	nic Carbon (TOC) (QCLot: 3742808)						
ES2122394-001	Anonymous	EP005: Total Organic Carbon		100 mg/L	99.4	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EW2102628** Page : 1 of 7

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Surface Water Date Samples Received : 16-Jun-2021

Site : DUNMORE LANDFILL TENDER Issue Date : 24-Jun-2021

Sampler : Robert DaLio No. of samples received : 3
Order number : 130985 No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 7
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals by ICP-MS - Suite A	0	15	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	0	19	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005FD: Field pH								
Field Test Dummy Bottle (EN67 PK) SWP2, SWP5	SWP4 Sand Mine Dam,	16-Jun-2021				16-Jun-2021		
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H) SWP2, SWP5	SWP4 Sand Mine Dam,	16-Jun-2021				21-Jun-2021	23-Jun-2021	✓
EA045: Turbidity								
Clear Plastic Bottle - Natural (EA045) SWP2, SWP5	SWP4 Sand Mine Dam,	16-Jun-2021				17-Jun-2021	18-Jun-2021	✓
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) SWP2, SWP5	SWP4 Sand Mine Dam,	16-Jun-2021				21-Jun-2021	30-Jun-2021	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) SWP2, SWP5	SWP4 Sand Mine Dam,	16-Jun-2021				16-Jun-2021	14-Jul-2021	✓
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) SWP2, SWP5	SWP4 Sand Mine Dam,	16-Jun-2021				16-Jun-2021	14-Jul-2021	✓

Page : 3 of 7

Work Order : EW2102628

Clear Plastic Bottle - Natural (EP030)

SWP5

SWP4 - - Sand Mine Dam,

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

18-Jun-2021

17-Jun-2021

Matrix: WATER Evaluation: **x** = Holding time breach; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation ED093F: Dissolved Major Cations Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 16-Jun-2021 18-Jun-2021 14-Jul-2021 SWP2, SWP4 - - Sand Mine Dam, SWP5 EG020F: Dissolved Metals by ICP-MS Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) 13-Dec-2021 SWP2, SWP4 - - Sand Mine Dam, 16-Jun-2021 18-Jun-2021 SWP5 EG020T: Total Metals by ICP-MS Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) 13-Dec-2021 SWP4 - - Sand Mine Dam, 16-Jun-2021 18-Jun-2021 18-Jun-2021 13-Dec-2021 SWP2, SWP5 EP005: Total Organic Carbon (TOC) Amber TOC Vial - Sulfuric Acid (EP005) SWP4 - - Sand Mine Dam, SWP5 16-Jun-2021 18-Jun-2021 14-Jul-2021 EP030: Biochemical Oxygen Demand (BOD)

16-Jun-2021

Page : 4 of 7
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

The expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: x = Quality Control frequency not within specification: $\sqrt{}$ = Quality Control frequency within specification.

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specificatio
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	4	38	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	3	18	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	4	38	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Biochemical Oxygen Demand (BOD)	EP030	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	0	15	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	<u>~</u>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	0	19	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7

Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Matrix: WATER			Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specific					
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Matrix Spikes (MS) - Continued								
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 6 of 7
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests - Port Kembla	EN67 PK	WATER	Field determinations as per methods described in APHA. The analysis is performed in the field by ALS samplers. ALS NATA accreditation apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)

Page : 7 of 7
Work Order : EW2102628

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Surface Water

Analytical Methods	Method	Matrix	Method Descriptions
Biochemical Oxygen Demand (BOD)	EP030	WATER	In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM Schedule B(3).
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

CHAIN OF CUSTODY

ALS Laboratory: please tick >

El Sydney 277 Woodperk Rd, Smithfield NSW 2178 Ph. 02 8784 8866 Ebamples syrney@alsenviro.com D. Newcastlo: 5 Rosagum Rd, Warabrook NSW 2304 Ph.02 4988 0433 E samples newcastle@alsenviro.com

CI Brisbane 32 Shand St, Stafford OLD 4053 Ph 97 3243 7222 Eisamples firisbane@alsenviro.com CI Townsvilla: 14-15 Desma Ct, Bohle QLD 4818 Ph 97 4750 6800 Ei Frenendte and Frenendte St

्वा .

© Melbourne: 2-4 Wectall Rd. Springveie VIC 3171 Ph:03 9549 9600 E. samples melboutne@alsenvim.com

Adetaide: 2-1 Burma Rd, Pooraka SA 5095
 Ph 03 8359 0890 Etadetaide@alsenviro.com

Perth. 10 Houl Way, Maraga WA 8090
Ph. 08 9209 7855 E. samples, perth@aisenwis.com
 Launceston: 27 Wellington St, Launceston TAS 7250

CLIENT:	Shellharbour City Council		T=				Ph 08 8359 08					E: launceston@alsenvi	ro.com	
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TA	AT move had language to a serve of the server	☐ Standard TAT (Lis						FOR LA	BORATORY USE (DNLY (Circle)	
PROJECT:	Dunmore Quarterly Ground Water	<u> </u>	ALS QUO	race Organics)	Non Standard or u	rgent TAT	(List due date				Gustedy S	eal intact?	Yes No	N/A
ORDER NUMBER:				170/03/	JIS TENDER				UENCE NUM	•	e) receipt?	frizen ice bricks prese	Yes Ve ntupon Yes N-	NA.
PROJECT MANAGER	: Joel Culton						COC OF:	⊢ ⊸⊢ ¯		5 6 5 6	9-7-1-10-1	,		
	bert Dakio	SAMPLER N	OBILE:		RELINQUISHED BY:			EIVED BY		5 6	7 Other con RELINQUISHE	Environ	mental Division	
COC emailed to ALS?	(YES / NO)	EDD FORM	AT (or defau	it):	Robat		A	ref	e.		THE PROPERTY OF THE PROPERTY O	Wollong	jong Order Reference	
Email Reports to :					DATE/TIME:						DATE/TIME:	ΪV	gong Order Reference V2102634	
	HANDLING/STORAGE OR DISPOSAI				17.6.21			17.6	» L1					
ALS USE ONLY	SAMPLE	CC reports to: DETAILS d(S) Water(W)		CONTAINER INFO	RMATION						odes must be listed to			:
		·				Whe	ere Metals are req	uired, specify	Total (unfiltered)	oottle required) o	r Dissolved (field filtered	<u> </u>	(4) 医多种性多种	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIV (refer to codes below)	E TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	T0C	Dissolved Fe & Mn	NT-4 (NO2, NO3)		Telephane	02 42253125	ution to.
1	BH1C	6-21 9:00	W			1	1	1	1	1			Field Tests - pH, EC, Temp	& SWI
2	ВН3	11:50	w			1	1	1	1	1	 	_	Field Tests - pH, EC, Temp	
3	BH4	12:10	w			1	1		1		· -			
Ч .	вн9	2:25	w				1		-				Field Tests - pH, EC, Temp	
5	BH12R	10:20	w			/	-		1		 		Field Tests - pH, EC, Temp	
6	BH13	10:35	w				1		1	_			Field Tests - pH, EC, Temp	
ז	BH14	11:10	w			1	1		-	· ·			Field Tests - pH, EC, Temp	
	BH15	10:00	w		- -		1		, ,				Field Tests - pH, EC, Temp	
<u> </u>	BH19R	(1:30	w				-		<u> </u>	· ·			Field Tests - pH, EC, Temp	
(2)	BH18		w						-				Field Tests - pH, EC, Temp	& SWL
, <u>, , , , , , , , , , , , , , , , , , </u>	BH21	12:55					V	_	1	-			Field Tests - pH, EC, Temp	& SWL
	BH22	9:30	- W	,		✓	1	-	-	✓			Field Tests - pH, EC, Temp &	& SWL
10		9:20	· w				/	-	*	✓			Field Tests - pH, EC, Temp &	& SWL
-														
<u>~</u> _						-		·						
														
		化基金素键数		1963年以前	TOTAL 10								<u> </u>	
/ = VOA Vial HCI Preserved	= Unpreserved Plastic; N = Nitric Preserved ; VB = VOA Vial Sodium Bisulphate Preserve Bottle; E = EDTA Preserved Bottles; ST ≃ Ste	Plastic; ORC = Nitric Preserved	ORC; SH = S	odium Hydroxide/Cd Preserved; S	≂ Sodium Hydroxide Pres	erved Plasti	c: AG = Ambor	Class Hann						

CERTIFICATE OF ANALYSIS

Work Order : **EW2102634** Page : 1 of 8

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Groundwaters EPL Date Samples Received : 17-Jun-2021 14:47

Order number : 130985 Date Analysis Commenced : 17-Jun-2021

C-O-C number : ---- Issue Date : 25-Jun-2021 08:40

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER GROUNDWATERS

No. of samples received : 12
No. of samples analysed : 12

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Aneta Prosaroski Client Liaison Officer Laboratory - Wollongong, NSW
Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW
Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 8 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate on sample 1 due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Sampling and groundwater depth measurements completed by ALS Wollongong via inhouse sampling method EN/67.11 Groundwater Sampling.
- Temperature performed by ALS Wollongong via in-house method EA016 and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	ВН1С	ВН3	BH4	ВН9	BH12R
		Sampli	ng date / time	17-Jun-2021 09:00	17-Jun-2021 11:50	17-Jun-2021 12:10	17-Jun-2021 08:25	17-Jun-2021 10:20
Compound	CAS Number	LOR	Unit	EW2102634-001	EW2102634-002	EW2102634-003	EW2102634-004	EW2102634-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	7.0	7.2	7.0	6.9	6.7
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	7080	1430	2090	5000	2270
EA116: Temperature								
Temperature		0.1	°C	24.0	18.7	19.0	17.3	21.8
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1630	259	411	1050	351
Total Alkalinity as CaCO3		1	mg/L	1630	259	411	1050	351
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	127	136	163	220
ED045G: Chloride by Discrete Analyse	er							
Chloride	16887-00-6	1	mg/L	865	155	227	630	275
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	143	156	233	285	239
Potassium	7440-09-7	1	mg/L	207	32	17	74	84
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.118	0.098	0.223	0.467	0.527
Iron	7439-89-6	0.05	mg/L	13.1	0.29	5.22	5.30	11.2
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	<0.1	0.4	0.2
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	0.01	mg/L	318	15.6	10.8	98.8	6.68
EK057G: Nitrite as N by Discrete Ana	lvser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.08	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Ana	alvser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	11.6	<0.01	<0.01	0.49
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Anal	vser				<u> </u>		
Nitrite + Nitrate as N		0.01	mg/L	<0.01	11.7	<0.01	<0.01	0.49
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	168	11	21	91	24

Page : 4 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	ВН1С	внз	BH4	ВН9	BH12R
		Samplir	ng date / time	17-Jun-2021 09:00	17-Jun-2021 11:50	17-Jun-2021 12:10	17-Jun-2021 08:25	17-Jun-2021 10:20
Compound	CAS Number	LOR	Unit	EW2102634-001	EW2102634-002	EW2102634-003	EW2102634-004	EW2102634-005
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	2.93	3.01	4.21	2.86	4.19

Page : 5 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Sampli	ng date / time	17-Jun-2021 10:35	17-Jun-2021 11:10	17-Jun-2021 10:00	17-Jun-2021 11:30	17-Jun-2021 12:55
Compound	CAS Number	LOR	Unit	EW2102634-006	EW2102634-007	EW2102634-008	EW2102634-009	EW2102634-010
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.7	6.4	6.9	7.1	6.7
EA010FD: Field Conductivity								
Electrical Conductivity (Non Compensated)		1	μS/cm	1490	1320	3260	1830	259
EA116: Temperature								
Temperature		0.1	°C	20.7	21.4	15.7	18.8	20.7
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	369	190	187	285	78
Total Alkalinity as CaCO3		1	mg/L	369	190	187	285	78
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	139	134	434	200	4
ED045G: Chloride by Discrete Analyse	er							
Chloride	16887-00-6	1	mg/L	118	102	527	215	10
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	174	102	83	166	33
Potassium	7440-09-7	1	mg/L	18	24	232	25	4
EG020F: Dissolved Metals by ICP-MS								
Manganese	7439-96-5	0.001	mg/L	0.146	0.062	0.248	0.120	0.051
Iron	7439-89-6	0.05	mg/L	1.10	0.09	6.34	1.05	0.96
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.4	0.2	0.1	0.2
EK055G: Ammonia as N by Discrete A	nalvser							
Ammonia as N	7664-41-7	0.01	mg/L	1.48	0.12	20.4	4.77	0.16
EK057G: Nitrite as N by Discrete Ana	lvser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.20	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Ana								
Nitrate as N	14797-55-8	0.01	mg/L	5.20	32.0	0.01	0.05	<0.01
EK059G: Nitrite plus Nitrate as N (NO		lvser						
Nitrite + Nitrate as N		0.01	mg/L	5.20	32.2	0.01	0.05	<0.01
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	18	35	34	18	2

Page : 6 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH13	BH14	BH15	BH19R	BH18
		Samplir	ng date / time	17-Jun-2021 10:35	17-Jun-2021 11:10	17-Jun-2021 10:00	17-Jun-2021 11:30	17-Jun-2021 12:55
Compound	CAS Number	LOR	Unit	EW2102634-006	EW2102634-007	EW2102634-008	EW2102634-009	EW2102634-010
				Result	Result	Result	Result	Result
QWI-EN 67.11 Sampling of Groundwaters								
Standing Water Level		0.01	m AHD	4.17	4.58	0.70	4.39	2.03

Page : 7 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	 	
		Sampli	ng date / time	17-Jun-2021 09:30	17-Jun-2021 09:20	 	
Compound	CAS Number	LOR	Unit	EW2102634-011	EW2102634-012	 	
				Result	Result	 	
EA005FD: Field pH							
pH		0.1	pH Unit	7.1	7.4	 	
EA010FD: Field Conductivity							
Electrical Conductivity (Non Compensated)		1	μS/cm	2570	2070	 	
EA116: Temperature							
Temperature		0.1	°C	21.9	19.1	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	315	356	 	
Total Alkalinity as CaCO3		1	mg/L	315	356	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	346	222	 	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	338	234	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	154	182	 	
Potassium	7440-09-7	1	mg/L	20	26	 	
EG020F: Dissolved Metals by ICP-MS							
Manganese	7439-96-5	0.001	mg/L	0.321	0.096	 	
Iron	7439-89-6	0.05	mg/L	0.83	0.71	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.3	 	
EK055G: Ammonia as N by Discrete Ana	alyser						
Ammonia as N	7664-41-7	0.01	mg/L	4.28	1.38	 	
EK057G: Nitrite as N by Discrete Analys	ser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analy	ser						
Nitrate as N	14797-55-8	0.01	mg/L	0.01	<0.01	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Anal	yser					
Nitrite + Nitrate as N		0.01	mg/L	0.01	<0.01	 	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	31	23	 	

Page : 8 of 8 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH21	BH22	 	
		Samplir	ng date / time	17-Jun-2021 09:30	17-Jun-2021 09:20	 	
Compound	CAS Number	LOR	Unit	EW2102634-011	EW2102634-012	 	
				Result	Result	 	
QWI-EN 67.11 Sampling of Groundwaters							
Standing Water Level		0.01	m AHD	1.81	2.46	 	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations (WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser (WATER) ED037P: Alkalinity by PC Titrator (WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

QUALITY CONTROL REPORT

- EW2102634 Work Order Page : 1 of 6

SHELL HARBOUR CITY CENTRE NSW. AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address Address : LAMERTON HOUSE, LAMERTON CRESCENT : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary Pl. North Nowra 2541

: 17-Jun-2021

· 25-Jun-2021

Australia NSW Australia

Telephone Telephone : +61 2 4225 3125

Date Samples Received Project : Dunmore Quarterly Groundwaters EPL : 17-Jun-2021 **Date Analysis Commenced**

Order number : 130985

Sampler · Robert DaLio

Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER GROUNDWATERS

No. of samples received : 12 No. of samples analysed : 12

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Aneta Prosaroski Client Liaison Officer Laboratory - Wollongong, NSW

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Page : 2 of 6 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
ED037P: Alkalinity	by PC Titrator (QC Lo	t: 3747676)								
EW2102629-006	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	479	512	6.6	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	479	512	6.6	0% - 20%	
EW2102634-005	BH12R	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	351	387	9.7	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	351	387	9.7	0% - 20%	
ED037P: Alkalinity	by PC Titrator (QC Lo	t: 3747678)								
EW2102634-010	BH18	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	78	81	3.6	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	78	81	3.6	0% - 20%	
ED041G: Sulfate (To	urbidimetric) as SO4 2	- by DA (QC Lot: 3742703)								
ES2122482-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1720	1720	0.2	0% - 20%	
EW2102632-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	<10	0.0	No Limit	
ED041G: Sulfate (T	urbidimetric) as SO4 2	- by DA (QC Lot: 3742706)								
EW2102634-010	BH18	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	4	4	0.0	No Limit	
ED045G: Chloride b	y Discrete Analyser (QC Lot: 3742702)								
ES2122482-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	206	206	0.0	0% - 20%	
EW2102632-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	1420	1440	1.4	0% - 20%	
ED045G: Chlo <u>ride b</u>	y Discrete Analyser(QC Lot: 3742705)				<u> </u>				
EW2102634-010	BH18	FD045G: Chloride	16887-00-6	1	mg/L	10	10	0.0	0% - 50%	
	BH18 Major Cations (QC Lo	ED045G: Chloride t: 3747025)	16887-00-6	1	mg/L	10	10		0.0	

Page : 3 of 6
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
ED093F: Dissolved	Major Cations (Q	C Lot: 3747025) - continued								
ES2122529-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	22	23	5.8	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	11	11	0.0	0% - 50%	
ES2122643-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit	
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit	
ED093F: Dissolved	Major Cations (Q	C Lot: 3747029)								
EW2102634-007	BH14	ED093F: Calcium	7440-70-2	1	mg/L	102	105	2.9	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	24	24	0.0	0% - 20%	
ME2100999-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	53	54	2.0	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	11	11	0.0	0% - 50%	
EG020F: Dissolved	Metals by ICP-MS	(QC Lot: 3747026)								
ES2122607-003	Anonymous	EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.012	0.011	0.0	0% - 50%	
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit	
EW2102634-003	BH4	EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.223	0.190	16.1	0% - 20%	
		EG020A-F: Iron	7439-89-6	0.05	mg/L	5.22	4.51	14.5	0% - 20%	
EK040P: Fluoride by	y PC Titrator (QC	Lot: 3747677)								
EW2102629-006	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.6	0.6	0.0	No Limit	
EW2102634-005	BH12R	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.0	No Limit	
EK055G: Ammonia	as N by Discrete A	Analyser (QC Lot: 3748924)								
EW2102634-004	ВН9	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	98.8	89.2	10.2	0% - 20%	
ES2122549-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.0	No Limit	
EK057G: Nitrite as	N by Discrete Ana	llyser (QC Lot: 3742701)								
ES2122482-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EW2102632-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.10	<0.10	0.0	No Limit	
EK057G: Nitrite as	N by Discrete Ana	llyser (QC Lot: 3742704)								
EW2102634-010	BH18	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EK059G: Nitrite plu	s Nitrate as N (NC	(QC Lot: 3748923)								
EW2102634-001	BH1C	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit	
ES2122549-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.33	0.34	0.0	0% - 20%	
	,	Dx) by Discrete Analyser (QC Lot: 3748925)								
EW2102634-012	BH22	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	0.0	No Limit	
EP005: Total Organi				3.31	9, _	3.01	5.01	5.0	Liniii	
EW2102634-001	BH1C			1	mg/l	168	167	0.0	0% - 20%	
EW2102634-001 EW2102634-011	BH21	EP005: Total Organic Carbon		1	mg/L mg/L	31	32	0.0	0% - 20%	
LVV2102034-011	ו אחט	EP005: Total Organic Carbon		ı	IIIg/L	31	32	0.0	070 - 2070	

Page : 4 of 6 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Mathod: Compound Cos Number LOR Unit Result Concentration LCS Low High	Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
ED037P, Alkalinity by PC Titrator (QCLot: 3747676) mgL					Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
ED037-P. Total Alkalinity by PC Titrator (QCLot: 3747678)	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
Propagate Prop	ED037P: Alkalinity by PC Titrator (QCLot: 3747676)								
ED037P: Alkalinity by PC Titrator (QCLot: 3747678)	ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	108	81.0	111
## BO937-P: Total Alkalinity as CaCO3						50 mg/L	104	80.0	120
### Start	ED037P: Alkalinity by PC Titrator (QCLot: 3747678)								
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3742703) T4908-79-8 1 mg/L <1 25 mg/L 108 82.0 122 122 122 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 124 125 125 124 125 124 125 124 125 125 124 125 125 124 125	ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	108	81.0	111
ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1 50 mg/L 108 82.0 122						50 mg/L	100	80.0	120
Section Sufface (Turbidimetric) as SO4 2- by DA (QCLot: 3742706) Sufface as SO4 - Turbidimetric 14808-79-8 1 mg/L <1 25 mg/L 108 82.0 122 122 122 122 122 123	ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLo	:: 3742703)							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3742706) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1 25 mg/L 105 82.0 122	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	108	82.0	122
ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1 25 mg/L 106 82.0 122 122 120 105 82.0 122 122 125 105 105 105 82.0 122 122 125 105					<1	500 mg/L	104	82.0	122
ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 1 mg/L <1 25 mg/L 106 82.0 122 122 120 105 82.0 122 122 125 105 105 105 82.0 122 122 125 105	ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLo	:: 3742706)							
ED045G: Chloride by Discrete Analyser (QCLot: 3742702) ED045G: Chloride by Discrete Analyser (QCLot: 3742705) 16887-00-6 1 mg/L < 1 50 mg/L 1000 mg/L 97.0 80.9 127 127	ED041G: Sulfate as SO4 - Turbidimetric		1	mg/L	<1	25 mg/L	106	82.0	122
ED045G: Chloride 16887-00-6 1 mg/L <1 50 mg/L 102 80.9 127 127 1000 mg/L 97.0 80.9 127 127 128 127 128 127 128 128 127 128 128 127 128 128 127 128					<1	500 mg/L	105	82.0	122
ED045G: Chloride 16887-00-6 1 mg/L <1 50 mg/L 102 80.9 127 127 1000 mg/L 97.0 80.9 127 127 128 127 128 127 128 128 127 128 128 127 128 128 127 128	ED045G: Chloride by Discrete Analyser (QCLot: 3742702	2)							
### Section Process Pr	ED045G: Chloride		1	mg/L	<1	50 mg/L	102	80.9	127
Mg/L Start					<1	1000 mg/L	97.0	80.9	127
Mg/L Start	ED045G: Chloride by Discrete Analyser (QCLot: 3742705	5)							
ED093F: Dissolved Major Cations (QCLot: 3747025) ED093F: Calcium 7440-70-2 1 mg/L <1 50 mg/L 109 80.0 114 ED093F: Potassium 7440-09-7 1 mg/L <1 50 mg/L 93.0 85.0 113 ED093F: Dissolved Major Cations (QCLot: 3747029) ED093F: Calcium 7440-70-2 1 mg/L <1 50 mg/L 111 80.0 114 ED093F: Dissolved Major Cations (QCLot: 3747029) ED093F: Dissolved Metals by ICP-MS (QCLot: 3747026) EG020A: Dissolved Metals by ICP-MS (QCLot: 3747026) EG020A: Iron 7439-89-6 0.05 mg/L <0.001 0.1 mg/L 90.4 82.0 110 EG020A: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride by PC Titrator (QCLot: 3748924) EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N 7664-41-7 0.01 mg/L <0.01 1 mg/L 97.8 90.0 114 EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701)	ED045G: Chloride	 	1	mg/L	<1	50 mg/L	101	80.9	127
Table Tabl					<1	1000 mg/L	96.7	80.9	127
Table Tabl	ED093F: Dissolved Major Cations (QCLot: 3747025)								
ED093F: Dissolved Major Cations (QCLot: 3747029) ED093F: Calcium 7440-70-2 1 mg/L <1 50 mg/L 111 80.0 114 ED093F: Potassium 7440-09-7 1 mg/L <1 50 mg/L 94.3 85.0 113 EG020F: Dissolved Metals by ICP-MS (QCLot: 3747026) EG020A-F: Manganese 7439-96-5 0.001 mg/L <0.001 0.1 mg/L 90.4 82.0 110 EG020A-F: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride by PC Titrator (QCLot: 3748924) EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701)	ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	109	80.0	114
ED093F: Calcium 7440-70-2 1 mg/L <1 50 mg/L 111 80.0 114 ED093F: Potassium 7440-09-7 1 mg/L <1 50 mg/L 94.3 85.0 113 EG020F: Dissolved Metals by ICP-MS (QCLot: 3747026) EG020A-F: Manganese 7439-96-5 0.001 mg/L <0.001 0.1 mg/L 90.4 82.0 110 EG020A-F: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride 1698-48-8 0.1 mg/L <0.1 5 mg/L 98.4 82.0 116 EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N 7664-41-7 0.01 mg/L <0.01 1 mg/L 97.8 90.0 114 EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701)	ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	93.0	85.0	113
ED093F: Calcium 7440-70-2 1 mg/L <1 50 mg/L 111 80.0 114 ED093F: Potassium 7440-09-7 1 mg/L <1 50 mg/L 94.3 85.0 113 EG020F: Dissolved Metals by ICP-MS (QCLot: 3747026) EG020A-F: Manganese 7439-96-5 0.001 mg/L <0.001 0.1 mg/L 90.4 82.0 110 EG020A-F: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride 1698-48-8 0.1 mg/L <0.1 5 mg/L 98.4 82.0 116 EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N 7664-41-7 0.01 mg/L <0.01 1 mg/L 97.8 90.0 114 EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701)	ED093F: Dissolved Major Cations (QCLot: 3747029)								
EG020F: Dissolved Metals by ICP-MS (QCLot: 3747026) EG020A-F: Manganese 7439-96-5 0.001 mg/L <0.001 0.1 mg/L 90.4 82.0 110 EG020A-F: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride 16984-48-8 0.1 mg/L <0.1 5 mg/L 98.4 82.0 116 EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701)	ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	111	80.0	114
EG020A-F: Manganese 7439-96-5 0.001 mg/L <0.001 0.1 mg/L 90.4 82.0 110 EG020A-F: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride by PC Titrator (QCLot: 3747677)	ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	94.3	85.0	113
EG020A-F: Manganese 7439-96-5 0.001 mg/L <0.001 0.1 mg/L 90.4 82.0 110 EG020A-F: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride by PC Titrator (QCLot: 3747677)	EG020F: Dissolved Metals by ICP-MS (QCLot: 3747026)								
EG020A-F: Iron 7439-89-6 0.05 mg/L <0.05 0.5 mg/L 106 82.0 112 EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK040P: Fluoride by PC Titrator (QCLot: 3747677) EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701)	EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	90.4	82.0	110
EK040P: Fluoride 16984-48-8 0.1 mg/L <0.1 5 mg/L 98.4 82.0 116 EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N 7664-41-7 0.01 mg/L <0.01 1 mg/L 97.8 90.0 114 EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 0.5 mg/L 101 82.0 114	EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	106	82.0	112
EK040P: Fluoride 16984-48-8 0.1 mg/L <0.1 5 mg/L 98.4 82.0 116 EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N 7664-41-7 0.01 mg/L <0.01 1 mg/L 97.8 90.0 114 EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 0.5 mg/L 101 82.0 114	EK040P: Fluoride by PC Titrator (QCLot: 3747677)								
EK055G: Ammonia as N by Discrete Analyser (QCLot: 3748924) EK055G: Ammonia as N	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	98.4	82.0	116
EK055G: Ammonia as N 7664-41-7 0.01 mg/L <0.01 1 mg/L 97.8 90.0 114 EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01		748924)		-		-			
EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742701) EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 0.5 mg/L 101 82.0 114			0.01	mg/L	<0.01	1 mg/L	97.8	90.0	114
EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 0.5 mg/L 101 82.0 114									
Enter entitle de N	• • • • •		0.01	ma/L	<0.01	0.5 mg/L	101	82.0	114
			2.31		5.01	5.5 mg/L		02.0	

Page : 5 of 6
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	atory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)			
Method: Compound CAS Numb	er LOR	Unit	Result	Concentration	LCS	Low	High			
EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742704) - contin	EK057G: Nitrite as N by Discrete Analyser (QCLot: 3742704) - continued									
EK057G: Nitrite as N 14797-65-	0.01	mg/L	<0.01	0.5 mg/L	99.2	82.0	114			
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot	: 3748923)									
EK059G: Nitrite + Nitrate as N	- 0.01	mg/L	<0.01	0.5 mg/L	103	91.0	113			
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot	: 3748925)									
EK059G: Nitrite + Nitrate as N	- 0.01	mg/L	<0.01	0.5 mg/L	106	91.0	113			
EP005: Total Organic Carbon (TOC) (QCLot: 3742814)										
EP005: Total Organic Carbon	- 1	mg/L	<1	10 mg/L	99.1	72.0	120			

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Matrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3742703)							
ES2122482-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not Determined	70.0	130	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3742706)							
EW2102634-010	BH18	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	119	70.0	130	
ED045G: Chloride	by Discrete Analyser (QCLot: 3742702)							
ES2122482-001	Anonymous	ED045G: Chloride	16887-00-6	50 mg/L	# Not Determined	70.0	130	
ED045G: Chloride	by Discrete Analyser (QCLot: 3742705)							
EW2102634-010	BH18	ED045G: Chloride	16887-00-6	50 mg/L	108	70.0	130	
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 3747026)							
ES2122607-006	Anonymous	EG020A-F: Manganese	7439-96-5	1 mg/L	98.3	70.0	130	
EK040P: Fluoride	by PC Titrator (QCLot: 3747677)							
EW2102629-006	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	105	70.0	130	
EK055G: Ammoni	a as N by Discrete Analyser (QCLot: 3748924)							
ES2122549-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	116	70.0	130	
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 3742701)							
ES2122482-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	120	70.0	130	
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 3742704)							
EW2102634-010	BH18	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	104	70.0	130	

Page : 6 of 6
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Sub-Matrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable L	.imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 374	8923)					
ES2122549-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	120	70.0	130
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 374	8925)					
EW2102634-012	BH22	EK059G: Nitrite + Nitrate as N		0.5 mg/L	111	70.0	130
EP005: Total Orga	nic Carbon (TOC) (QCLot: 3742814)						
EW2102634-002	ВН3	EP005: Total Organic Carbon		100 mg/L	110	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EW2102634** Page : 1 of 8

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Groundwaters EPL Date Samples Received : 17-Jun-2021

Site : DUNMORE LANDFILL TENDER Issue Date : 25-Jun-2021

Sampler : Robert DaLio No. of samples received : 12
Order number : 130985 No. of samples analysed : 12

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 8 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	ES2122482001	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	ES2122482001	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

The control of the co							,	g
Method	Method						Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005FD: Field pH								
Field Test Dummy Bottle (EN67 PK)								
BH1C,	BH3,	17-Jun-2021				17-Jun-2021		
BH4,	вн9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
EA010FD: Field Conductivity								
Field Test Dummy Bottle (EN67 PK)								
BH1C,	внз,	17-Jun-2021				17-Jun-2021		
BH4,	вн9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							

Page : 3 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Matrix: **WATER**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA116: Temperature								
Field Test Dummy Bottle (EN67 PK)								
BH1C,	BH3,	17-Jun-2021				17-Jun-2021		
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
BH1C,	BH3,	17-Jun-2021				21-Jun-2021	01-Jul-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
ED041G: Sulfate (Turbidimetric) as SO4 2- by	/ DA							
Clear Plastic Bottle - Natural (ED041G)								
BH1C,	BH3,	17-Jun-2021				17-Jun-2021	15-Jul-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G)		47.1				4= 1	45 1-1 0004	
BH1C,	BH3,	17-Jun-2021				17-Jun-2021	15-Jul-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
ED093F: Dissolved Major Cations			1		1		I	
Clear Plastic Bottle - Nitric Acid; Filtered (ED0		47 1 2004				04 1 0004	15-Jul-2021	
BH1C,	BH3,	17-Jun-2021				21-Jun-2021	10-Jul-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							

Page : 4 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Matrix: **WATER**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered	(EG020A-F)							
BH1C,	BH3,	17-Jun-2021				21-Jun-2021	14-Dec-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P)								
BH1C,	BH3,	17-Jun-2021				21-Jun-2021	15-Jul-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
EK055G: Ammonia as N by Discrete Ana								
Clear Plastic Bottle - Sulfuric Acid (EK05		47.1					45 1 2024	,
BH1C,	BH3,	17-Jun-2021				22-Jun-2021	15-Jul-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
EK057G: Nitrite as N by Discrete Analys	ser					ı	ı	
Clear Plastic Bottle - Natural (EK057G)	DI IO	17-Jun-2021				17-Jun-2021	19-Jun-2021	,
BH1C,	BH3,	17-Jun-2021				17-Jun-2021	19-Juli-2021	✓
BH4,	BH9,							
BH12R,	BH13,							
BH14,	BH15,							
BH19R,	BH18,							
BH21,	BH22							
EK059G: Nitrite plus Nitrate as N (NOx)						I		
Clear Plastic Bottle - Sulfuric Acid (EK05 BH1C,		17-Jun-2021				22-Jun-2021	15-Jul-2021	
BH4,	BH3, BH9,	17-3uil-2021				22-5011-2021	10 001-2021	✓
ВН4, ВН12R,	внэ, ВН13,							
BH14,	внтз, ВН15,							
BH19R,	внтэ, ВН18,							
BH21,	внтв, ВН22							
рпи,	DNZZ							

Page : 5 of 8
Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Matrix: WATER

Evaluation: × = Holding time breach ; ✓ = Within holding time.

Method			Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP005: Total Organic Carbon (TOC)									
Amber TOC Vial - Sulfuric Acid (EP005)									
BH1C,	BH3,	17-Jun-2021				18-Jun-2021	15-Jul-2021	✓	
BH4,	BH9,								
BH12R,	BH13,								
BH14,	BH15,								
BH19R,	BH18,								
BH21,	BH22								
QWI-EN 67.11 Sampling of Groundwate	ers								
Field Test Dummy Bottle (EN67 PK)									
BH1C,	BH3,	17-Jun-2021				17-Jun-2021			
BH4,	BH9,								
BH12R,	BH13,								
BH14,	BH15,								
BH19R,	BH18,								
BH21,	BH22								

Page : 6 of 8 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

	-						not within specification ; ✓ = Quality Control frequency within specification ;
Quality Control Sample Type			ount		Rate (%)	F -1 -17 -	Quality Control Specification
nalytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
luoride by PC Titrator	EK040P	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	4	29	13.79	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	20	15.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	4	23	17.39	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	4	23	17.39	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
luoride by PC Titrator	EK040P	1	17	5.88	5.00		NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	29	6.90	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	23	8.70	5.00		NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	23	17.39	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	23	8.70	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.88	5.00		NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	17	5.88	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	29	6.90	5.00	<u> </u> ✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	5.00		NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	2	23	8.70	5.00		NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	23	8.70	5.00		NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
	LF 003			5.00	5.00		
Matrix Spikes (MS) Ammonia as N by Discrete analyser	FVAFFA	1	18	5.56	5.00		NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	EK055G	2	23		5.00	√	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	ED045G	1	17	8.70	5.00	√	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EG020A-F EK040P	1	17	5.88 5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; < = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Evaluation Analytical Methods Method QC Regular Expected Actual Matrix Spikes (MS) - Continued Nitrite and Nitrate as N (NOx) by Discrete Analyser EK059G 2 20 10.00 5.00 NEPM 2013 B3 & ALS QC Standard Nitrite as N by Discrete Analyser 2 23 8.70 NEPM 2013 B3 & ALS QC Standard EK057G 5.00 Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser 2 23 NEPM 2013 B3 & ALS QC Standard ED041G 8.70 5.00 ✓ Total Organic Carbon 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard EP005

Page : 8 of 8 Work Order : EW2102634

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Groundwaters EPL

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Field Tests - Port Kembla	EN67 PK	WATER	Field determinations as per methods described in APHA. The analysis is performed in the field by ALS samplers. ALS NATA accreditation apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)

CHAIN OF CUSTODY

ALS Laboratory: please tick >

□ Sydney, 277 Woodpark Rd, Smithfield NSW 2176 □ Brisbane; 32 Shand St Stafford QLD 4063 Ph. 02 8794 8535 E pamples sydney@alserviro.com Ph.07 3243 7222 E samples brisbane@alserviro. FI Newcastle: 5 Roseaum Rd. Warabrook NSW 2304

Ph:07 3243 7222 Eisamples bilsbane@alsanvini.com FI Townsville: 14-15 Desma Ct Bobie GLD 4818 Ph-07 4708 0600 E. townsville enuronmental@alconvire com E3 Melbourne, 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E: samples Inelbourne@alsenviro.com C Adelaide: 2-1 Burma Rd Pooraka SA 6095

El Perth: 10 Hod Way, Malaga WA 8090 Ph: 08 9209 7855 E. samples perth@alsenvirc.com D Launceston: 27 Wellington St. Launceston TAS 7250 Ph 03 6331 2158 Et laungestoni@aisenviro.com

(ALS)	Ph.02 4968 9433 E.camples.newcastle@atsenviro.com Ph.07 4795 0900 E. teumsellis enumerance@atsenviro.com Ph. 98 8359 0900 E.sdelaide@atsenviro.com Ph. 98 8359 0900 E.sdelaide@atsenviro.com Ph. 98 8359 0900 E.sdelaide@atsenviro.com							Ph. 03 5331 2138 El laundestoni@alsenviro.com				
CLIENT:	Shellharbour City Council		1		ndard TAT (List	t due date):					FOR LABORATORY USE	
OFFICE:	41 Burelli St WOLLONGONG NSW	2500	(Standard TA1	T may be longer for some tests Ce Organics)	Standard or un	gent TAT (L	.ist due date):				Custody Seal Intect?	Yes No No NA
PROJECT:	Dunmore Quarterly Leachate	`	ALS QUOT						JENCE NUME	BER (Circle	CONTRACTOR	eelht Lipon Yes No N4A
ORDER NUMBER:							coc:	1 2	3 4	5 6	7 Random Sample Temperatura	on Receipt: 10
PROJECT MANAGER:	Joel Culton						OF:	1 2		5 6	7 Other comment	
SAMPLER: (Labe	of Datio	\$AMPLER I	AOBILE:	RELINGI	UISHED BY: Bert ME: 62(RECE	EIMED BY:	12		RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS? (EDD FORM	AT (or default	n): 40	nent-	r		ATIME:	14			
Email Reports to :				DATE/Til	ME:		DATE	₹TIME:	in		DATE/TIME:	DATE/TIME:
Email Invoice to:					621	14	:30	[] -	6:11			
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL: CC reports to:			,							
ALS USE ONLY		E DETAILS olid(S) Water(W)		CONTAINER INFORMATIO	ON .				_		ordes must be listed to attract suite price) or Dissolved (field filtered bottle required).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Ammonia	NT-2A (Alka, So4, Cl, Fl) Filtered Ca, K	T0C	Total Fe & Mn	NT-4 (NO2, NO3)		Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	Leachate Sump	6.21 13:5	w			1	1	✓	1	1		Field Tests - pH, EC, Temp & DO
<u> </u>		0.21 1.05	+				-					
									ļ <u>.</u>			
									1			
			+ +									
										İ		
											<u> </u> '	
											Environment	ol District
											Wollongong Work Order F	al Division
									+	_	Work Order i	Reference
											\perp EW21	02633
												4 M/Ce 20 (3))
						 						
			 									(# 157 E
· .												NB52 m (1)
-										T	Telephone : 02 4225313	O6
			+ +								7220017	
					405	<u> </u>						
				тот	10		1	1	1			

CERTIFICATE OF ANALYSIS

Work Order : **EW2102633** Page : 1 of 4

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Leachate Date Samples Received : 17-Jun-2021 14:49

Order number : 130985 Date Analysis Commenced : 17-Jun-2021

C-O-C number : ---- Issue Date : 25-Jun-2021 08:40

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER
Quote number : WO/030/19 TENDER LEACHATE

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with
ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Aneta Prosaroski Client Liaison Officer Laboratory - Wollongong, NSW
Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW
Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 4
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

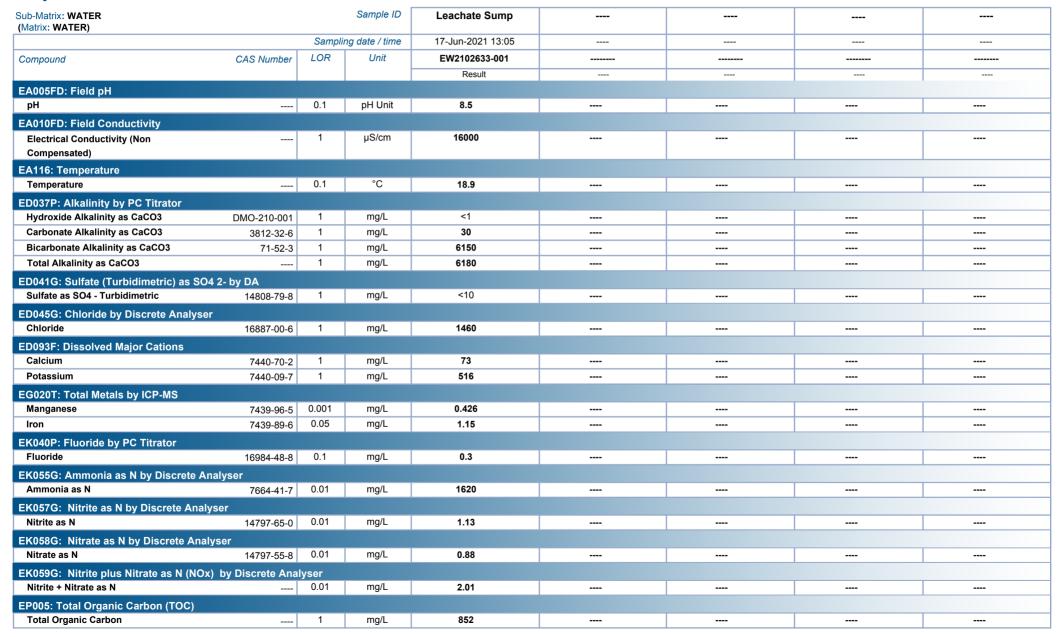
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

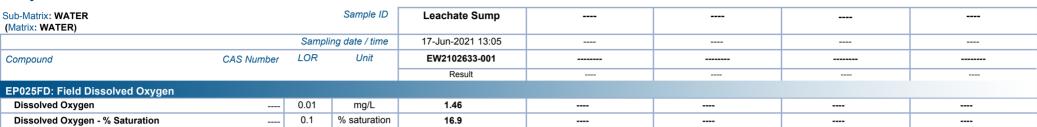

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- ED041G: LOR raised for Sulfate due to sample matrix.
- pH performed by ALS Wollongong via in-house method EA005FD and EN67 PK.
- Electrical conductivity performed by ALS Wollongong via in-house method EA010FD and EN67 PK.
- Temperature performed by ALS Wollongong via in-house method EA016 and EN67 PK.
- Dissolved oxygen (DO) performed by ALS Wollongong via in-house method EA025FD and EN67 PK.
- All field analysis performed by ALS Wollongong were completed at the time of sampling.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/67.10 Wastewaters
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4 Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate

Analytical Results



Page : 4 of 4 Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Quarterly Leachate

Analytical Results

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) ED093F: Dissolved Major Cations (WATER) EP005: Total Organic Carbon (TOC)

(WATER) EK055G: Ammonia as N by Discrete Analyser

(WATER) EG020T: Total Metals by ICP-MS

(WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK058G: Nitrate as N by Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) ED045G: Chloride by Discrete Analyser (WATER) ED037P: Alkalinity by PC Titrator (WATER) EK040P: Fluoride by PC Titrator

(WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA

QUALITY CONTROL REPORT

Work Order : **EW2102633** Page : 1 of 5

SHELL HARBOUR CITY CENTRE NSW. AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

· 25-Jun-2021

Australia NSW Australia

Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Leachate Date Samples Received : 17-Jun-2021

Order number : 130985 Date Analysis Commenced : 17-Jun-2021

Sampler · Robert DaLio

Site : DUNMORE LANDFILL TENDER
Quote number : WO/030/19 TENDER LEACHATE

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with
ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Aneta Prosaroski Client Liaison Officer Laboratory - Wollongon

Aneta ProsaroskiClient Liaison OfficerLaboratory - Wollongong, NSWAnkit JoshiInorganic ChemistSydney Inorganics, Smithfield, NSWIvan TaylorAnalystSydney Inorganics, Smithfield, NSW

Page : 2 of 5 Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
ED037P: Alkalinity I	by PC Titrator (QC Lo	ot: 3747676)									
EW2102629-006	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	479	512	6.6	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	479	512	6.6	0% - 20%		
EW2102634-005	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	351	387	9.7	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	351	387	9.7	0% - 20%		
ED041G: Sulfate (Tu	urbidimetric) as SO4	2- by DA (QC Lot: 3742703)									
ES2122482-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1720	1720	0.2	0% - 20%		
EW2102632-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<10	<10	0.0	No Limit		
ED045G: Chloride b	y Discrete Analyser	(QC Lot: 3742702)									
ES2122482-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	206	206	0.0	0% - 20%		
EW2102632-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	1420	1440	1.4	0% - 20%		
ED093F: Dissolved	Major Cations (QC L	ot: 3747025)									
ES2122529-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	22	23	5.8	0% - 20%		
		ED093F: Potassium	7440-09-7	1	mg/L	11	11	0.0	0% - 50%		
ES2122643-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit		
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit		
EG020T: Total Meta	ls by ICP-MS (QC Lo	t: 3748745)									
WN2106068-002	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.405	0.409	1.1	0% - 20%		
		EG020A-T: Iron	7439-89-6	0.05	mg/L	5.63	5.74	1.8	0% - 20%		
ES2122966-001	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.043	0.044	3.2	0% - 20%		
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.86	0.93	7.8	0% - 50%		

Page : 3 of 5
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EK040P: Fluoride by	PC Titrator (QC Lot: 37	7 47677)								
EW2102629-006	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.6	0.6	0.0	No Limit	
EW2102634-005	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.0	No Limit	
EK055G: Ammonia	as N by Discrete Analyse	er (QC Lot: 3748924)								
EW2102634-004	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	98.8	89.2	10.2	0% - 20%	
ES2122549-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.0	No Limit	
EK057G: Nitrite as I	N by Discrete Analyser((QC Lot: 3742701)								
ES2122482-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EW2102632-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.10	<0.10	0.0	No Limit	
EK059G: Nitrite plus	s Nitrate as N (NOx) by I	Discrete Analyser (QC Lot: 3748923)								
EW2102634-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit	
ES2122549-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.33	0.34	0.0	0% - 20%	
EP005: Total Organi	c Carbon (TOC) (QC Lot	t: 3742810)								
ES2122475-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	10	15	37.6	0% - 50%	
ES2122485-009	Anonymous	EP005: Total Organic Carbon		1	mg/L	4	5	0.0	No Limit	

Page : 4 of 5 Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	ontrol Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED037P: Alkalinity by PC Titrator (QCLot: 374767)	6)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	108	81.0	111	
					50 mg/L	104	80.0	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	(QCLot: 3742703)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	108	82.0	122	
				<1	500 mg/L	104	82.0	122	
ED045G: Chloride by Discrete Analyser (QCLot: 3	742702)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	102	80.9	127	
				<1	1000 mg/L	97.0	80.9	127	
ED093F: Dissolved Major Cations (QCLot: 374702	5)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	109	80.0	114	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	93.0	85.0	113	
EG020T: Total Metals by ICP-MS (QCLot: 3748745)								
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	97.2	85.0	113	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	100	85.0	117	
EK040P: Fluoride by PC Titrator (QCLot: 3747677))								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	98.4	82.0	116	
EK055G: Ammonia as N by Discrete Analyser (QC	Lot: 3748924)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	97.8	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLo	t: 3742701)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	101	82.0	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	te Analyser (QCLot: 374	48923)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	103	91.0	113	
EP005: Total Organic Carbon (TOC) (QCLot: 3742	810)								
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	91.5	72.0	120	
			-	1					

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable L	_imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 3742703)						

Page : 5 of 5
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (1	Furbidimetric) as SO4 2- by DA (QCLot: 3742703) - cont	inued					
ES2122482-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not Determined	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 3742702)						
ES2122482-001	Anonymous	ED045G: Chloride	16887-00-6	50 mg/L	# Not Determined	70.0	130
EG020T: Total Met	als by ICP-MS (QCLot: 3748745)						
ES2122966-002	Anonymous	EG020A-T: Manganese	7439-96-5	1 mg/L	97.9	70.0	130
EK040P: Fluoride	by PC Titrator (QCLot: 3747677)						
EW2102629-006	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	105	70.0	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 3748924)						
ES2122549-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	116	70.0	130
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 3742701)						
ES2122482-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	120	70.0	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 37	48923)					
ES2122549-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	120	70.0	130
EP005: Total Orga	nic Carbon (TOC) (QCLot: 3742810)						
ES2122478-001	Anonymous	EP005: Total Organic Carbon		100 mg/L	99.4	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EW2102633** Page : 1 of 7

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Telephone : +61 2 4225 3125

Project : Dunmore Quarterly Leachate Date Samples Received : 17-Jun-2021

Site : DUNMORE LANDFILL TENDER Issue Date : 25-Jun-2021

Sampler : Robert DaLio No. of samples received : 1
Order number : 130985 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 7
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	ES2122482001	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	ES2122482001	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **WATER**Evaluation: **×** = Holding time breach; **√** = Within holding time.

						,	
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005FD: Field pH							
Field Test Dummy Bottle (EN67 PK)							
Leachate Sump	17-Jun-2021				17-Jun-2021		
EA010FD: Field Conductivity							
Field Test Dummy Bottle (EN67 PK)	47 Jun 2024				47 1 2024		
Leachate Sump	17-Jun-2021				17-Jun-2021		
EA116: Temperature		1	1 1		ı	ı	
Field Test Dummy Bottle (EN67 PK) Leachate Sump	17-Jun-2021				17-Jun-2021		
	17-5411-2021				17-5011-2021		
ED037P: Alkalinity by PC Titrator		 			I		
Clear Plastic Bottle - Natural (ED037-P) Leachate Sump	17-Jun-2021				21-Jun-2021	01-Jul-2021	1
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA					ļ		
Clear Plastic Bottle - Natural (ED041G)							
Leachate Sump	17-Jun-2021				17-Jun-2021	15-Jul-2021	✓
ED045G: Chloride by Discrete Analyser							
Clear Plastic Bottle - Natural (ED045G)							
Leachate Sump	17-Jun-2021				17-Jun-2021	15-Jul-2021	✓
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural (ED093F)							
Leachate Sump	17-Jun-2021				21-Jun-2021	24-Jun-2021	✓

Page : 3 of 7

Work Order : EW2102633

Field Test Dummy Bottle (EN67 PK)

Leachate Sump

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

17-Jun-2021

Matrix: WATER Evaluation: × = Holding time breach; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EG020T: Total Metals by ICP-MS Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) 17-Jun-2021 22-Jun-2021 14-Dec-2021 22-Jun-2021 14-Dec-2021 Leachate Sump EK040P: Fluoride by PC Titrator Clear Plastic Bottle - Natural (EK040P) 15-Jul-2021 Leachate Sump 17-Jun-2021 21-Jun-2021 EK055G: Ammonia as N by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK055G) Leachate Sump 17-Jun-2021 22-Jun-2021 15-Jul-2021 EK057G: Nitrite as N by Discrete Analyser Clear Plastic Bottle - Natural (EK057G) 17-Jun-2021 17-Jun-2021 19-Jun-2021 Leachate Sump EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK059G) 17-Jun-2021 22-Jun-2021 15-Jul-2021 Leachate Sump EP005: Total Organic Carbon (TOC) Amber TOC Vial - Sulfuric Acid (EP005) 17-Jun-2021 18-Jun-2021 15-Jul-2021 Leachate Sump EP025FD: Field Dissolved Oxygen

17-Jun-2021

Page : 4 of 7
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Nitrite and Nitrate as N (NOx) by Discrete Analyser

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	ount		Rate (%)		not within specification; ✓ = Quality Control frequency wi
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Ikalinity by PC Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
mmonia as N by Discrete analyser	EK055G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
hloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
uoride by PC Titrator	EK040P	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
ajor Cations - Dissolved	ED093F	2	17	11.76	10.00	√	NEPM 2013 B3 & ALS QC Standard
trite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
trite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	2	11	18.18	10.00	√	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
Ikalinity by PC Titrator	ED037-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
mmonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
nloride by Discrete Analyser	ED045G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
uoride by PC Titrator	EK040P	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
ajor Cations - Dissolved	ED093F	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
trite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
trite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	11	9.09	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
ethod Blanks (MB)							
mmonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
nloride by Discrete Analyser	ED045G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
uoride by PC Titrator	EK040P	1	17	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
ajor Cations - Dissolved	ED093F	1	17	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
trite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
trite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	11	9.09	5.00	<u>·</u> ✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
atrix Spikes (MS)							
mmonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
uoride by PC Titrator	EK040P	1	17	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
italia and Nitrata and NAO Alba Dinanta Anabana		4	10				NEDM 0040 DO 0 ALO 00 Oten dend

19

EK059G

5.26

5.00

NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Matrix: WATER Evaluation: * = Quality Control frequency not within specification; < = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Evaluation Analytical Methods Method QC Regular Expected Actual Matrix Spikes (MS) - Continued Nitrite as N by Discrete Analyser EK057G 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser 1 20 5.00 NEPM 2013 B3 & ALS QC Standard ED041G 5.00 Total Metals by ICP-MS - Suite A 1 11 NEPM 2013 B3 & ALS QC Standard EG020A-T 9.09 5.00 ✓ Total Organic Carbon 1 20 5.00 5.00 NEPM 2013 B3 & ALS QC Standard EP005

Page : 6 of 7
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Field Tests - Port Kembla	EN67 PK	WATER	Field determinations as per methods described in APHA. The analysis is performed in the field by ALS samplers. ALS NATA accreditation apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)

Page : 7 of 7
Work Order : EW2102633

Client : SHELLHARBOUR CITY COUNCIL
Project : Dunmore Quarterly Leachate

Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

Appendix C

Laboratory Chain of Custody (COC) & Certificates of Analysis (COA) – Dust Samples

CHAIN OF CUSTODY

ALS Laboratory: please tick ->

C: Sydney: 277 Woodpark Rd. Smithfield NSW 2176 Ph: 62 8784 8555 E:samples.sydney@alsenviro.com

□ Newcastle: 5 Rosegiun Rd, Watabrook NSW 2304
Ph:02 4966 9433 Etsamples newcastle@alsenviro.com
Ph:02 4966 9433 Etsamples newcastle@alsenviro.com

D Brisbane 32 Shand St. Stafford QLD 4053 Ph:07 3243 7222 E samoles brisbane/@alsenviro.com

 Melbourne: 2-4 Westall Rd. Springvale ViC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenviro.com

Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

☐ Perth: 10 Hod Way. Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenvire.com

Launceston: 27 Wellington St, Launceston TAS 7250
 Ph: 03 6331 2158 E: launceston@alsenviro.com

CLIENT:	Shellharbour City Council			UND REQUIREMENTS:	☐ Standard TAT (Li	st due date):						FOR	LABORAT	ORY USE (ONLY (Circle)
OFFICE:	Dunmore		(Standard TAT e.g., Ultra Trad	T may be longer for some tests ice Organics)	☐ Non Standard or	urgent TAT (List	due date):							er 111	
PROJECT:	Dunmore Dust			E NO.: WO/030/19 TEND		•		coc s	SEQUEN	CE NUME	BER (Circle)	Free	ice / frozenici	e bricks prese	Yes No Nu ntugon Yes No Nu
ORDER NUMBER:						***	coc:	1	2	3 4	5 6	2404528666	THE RESIDENCE OF THE PARTY OF T	emperature o	
PROJECT MANAGER	: Joel Culton					•	OF;	1	2	3 4	5 6	7 Othe	comment;		
SAMPLER: Rober	t Dalio	SAMPLER M	IOBILE:		RELINQUISHED BY:		RECEIV	VED	BY:			RELINQU	ISHED BY:		RECEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORM/	AT (or default	t):	Robert	- >	1	1/1	hel						
Email Reports to :					DATE/TIME:		DATER	IME				DATE/TIM	E:		DATE/TIME:
Email Invoice to :		<u> </u>			16.6.21	15:2	16.6	٥.2	1		15:20				
COMMENTS/SPECIAL	. HANDLING/STORAGE OR DISPO	SAL: CC reports to:	:							-	-				
ALS USE ONLY		PLE DETAILS Solid(S) Water(W)		CONTAINER INF	ORMATION	ANALYSIS Where Met							sted to attract		Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes belov		A04 (Ash, CM, TIS)									Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
1	DDG1	16.6.2 1 13'rc	AIR			1									
2	DDG2	13'00				1			-		†			Calabaa	
			†								⊢ Er	vironm	ental D	Mision	
3	DDG3	10.7	AIR			1					W	Ollongo Work Or	ng der Refer	rence	!
4	DDG4	1/3	AIR			✓						FW	2102	rence 2631	
											+				-
												elephane : 0:	42263126		
<u> </u>		<u> </u>									"	elebuarie : u		1	
									_		-	 			
									_		-		ļ		
Water Container Codes	Ralloprosecuted Pleases Na Miles	And Blocker OBC - Nilst Day	1000 011		TOTAL 10										
v = voa viai hui Preserve	P = Unpreserved Plastic; N = Nitric Prese ed; VB = VOA Vial Sodium Bisulphate Presi d Bottle: F = FDTA Preserved Battles; ST =	erved: VS = VOA Vial Sulfuric Presen.	ved: AV = Airfreid	ight Unpreserved Viol SC = Sulfi	১ = ১০৫ium Hydroxide Pres uric-Preserved-Amber Glas	served Plastic; AG : ss;H=-HGI-preser	= Amber Glas	ss Unp HS =	oreserved HCl-ores	; AP - Aid erved Sos	freight Unpres	erved Plastic	Preserved Di-	astic: F = For	naldebyde Preserved Glass
Zinc Acetate Preserved	Bottle; E = EDTA Preserved Bottles; ST =	Sterile Bottle; ASS = Plastic Bag for	Acid Sulphate S	ioils; B = Unpreserved Bag.			,	-							

CERTIFICATE OF ANALYSIS

Work Order : **EW2102631** Page : 1 of 2

SHELL HARBOUR CITY CENTRE NSW, AUSTRALIA 2529

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Telephone : ---- Telephone : +61 2 4225 3125

Project : Dunmore Landfill Dust Date Samples Received : 16-Jun-2021 15:20

Order number : 130985 Date Analysis Commenced : 18-Jun-2021

C-O-C number : ---- Issue Date : 23-Jun-2021 12:30

Sampler : Robert DaLio

Site : DUNMORE LANDFILL TENDER
Quote number : WO/030/19 TENDER DUST

No. of samples received : 4
No. of samples analysed : 4

Accreditation No. 825
Accredited for compliance with
ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Zoran Grozdanovski Laboratory Operator Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 2 Work Order : EW2102631

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Newcastle.
- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation is not held for results reported in g/m².mth.
- Sampling completed by ALS Wollongong in accordance with in-house sampling method EN/66.1 Sampling and Siting of Dust Deposition Gauges.
- Sample exposure period is 33 days which is outside the typical exposure period of 30 +/- 2 days as per AS3580.10.1.

Analytical Results

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	DDG1 14/05/2021 - 16/06/2021	DDG2 14/05/2021 - 16/06/2021	DDG3 14/05/2021 - 16/06/2021	DDG4 14/05/2021 - 16/06/2021	
		Sampli	ng date / time	16-Jun-2021 13:10	16-Jun-2021 13:00	16-Jun-2021 10:30	16-Jun-2021 11:30	
Compound	CAS Number	LOR	Unit	EW2102631-001	EW2102631-002	EW2102631-003	EW2102631-004	
				Result	Result	Result	Result	
EA120: Ash Content								
Ash Content		0.1	g/m².month	<0.1	0.1	0.3	0.1	
Ash Content (mg)		1	mg	<1	1	5	2	
EA125: Combustible Matter								
Combustible Matter		0.1	g/m².month	<0.1	<0.1	0.1	0.1	
Combustible Matter (mg)		1	mg	<1	<1	2	1	
EA141: Total Insoluble Matter								
Total Insoluble Matter		0.1	g/m².month	<0.1	0.1	0.4	0.2	
Total Insoluble Matter (mg)		1	mg	<1	1	7	3	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(AIR) EA125: Combustible Matter

(AIR) EA120: Ash Content

(AIR) EA141: Total Insoluble Matter

QUALITY CONTROL REPORT

Work Order : **EW2102631** Page : 1 of 3

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton Contact : Aneta Prosaroski

Address : LAMERTON HOUSE, LAMERTON CRESCENT Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

· 23-Jun-2021

Australia NSW Australia

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Telephone : +61 2 4225 3125

Project : Dunmore Landfill Dust Date Samples Received : 16-Jun-2021

Order number : 130985 Date Analysis Commenced : 18-Jun-2021

C-O-C number : ---- Issue Date

SHELL HARBOUR CITY CENTRE NSW. AUSTRALIA 2529

Sampler : Robert DaLio
Site : DUNMORE LANDFILL TENDER

Quote number : WO/030/19 TENDER DUST

No. of samples received : 4

No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Zoran Grozdanovski Laboratory Operator Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 3 Work Order : EW2102631

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 3 Work Order : EW2102631

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (LCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EW2102631** Page : 1 of 4

Client : SHELLHARBOUR CITY COUNCIL Laboratory : Environmental Division NSW South Coast

Contact : Joel Coulton : +61 2 4225 3125

Project : Dunmore Landfill Dust : 16-Jun-2021

Site : DUNMORE LANDFILL TENDER : 23-Jun-2021

Sampler : Robert DaLio No. of samples received : 4
Order number : 130985 No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : EW2102631

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

WIGHTA. AIIX					Lvaluation	. • - Holding time	Dicacii, • - with	in notaling tim
Method		Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA120: Ash Content								
Dust Gauge (Bottle) - Copper Sulfate (EA120)								
DDG1 - 14/05/2021 - 16/06/2021,	DDG2 - 14/05/2021 - 16/06/2021,	16-Jun-2021				18-Jun-2021	13-Dec-2021	✓
DDG3 - 14/05/2021 - 16/06/2021,	DDG4 - 14/05/2021 - 16/06/2021							
EA125: Combustible Matter								
Oust Gauge (Bottle) - Copper Sulfate (EA125)								
DDG1 - 14/05/2021 - 16/06/2021,	DDG2 - 14/05/2021 - 16/06/2021,	16-Jun-2021				18-Jun-2021	13-Dec-2021	✓
DDG3 - 14/05/2021 - 16/06/2021,	DDG4 - 14/05/2021 - 16/06/2021							
EA141: Total Insoluble Matter								
Dust Gauge (Bottle) - Copper Sulfate (EA141)								
DDG1 - 14/05/2021 - 16/06/2021,	DDG2 - 14/05/2021 - 16/06/2021,	16-Jun-2021				18-Jun-2021	13-Dec-2021	✓
DDG3 - 14/05/2021 - 16/06/2021,	DDG4 - 14/05/2021 - 16/06/2021							

Page : 3 of 4
Work Order : EW2102631

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

Quality Control Parameter Frequency Compliance

No Quality Control data available for this section.

Page : 4 of 4 Work Order : EW2102631

Client : SHELLHARBOUR CITY COUNCIL

Project : Dunmore Landfill Dust

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Ash Content (AC)	EA120	AIR	In house: Referenced to AS 3580.10.1. A gravimetric procedure reporting Ash content in deposited dust.
Combustible Matter (CM)	EA125	AIR	In house: Referenced to AS 3580.10.1. A gravimetric procedure reporting Combustible Matter in deposited dust.
Total Insoluble Matter (TIM)	EA141	AIR	In house: Referenced to AS 3580.10.1. A gravimetric procedure reporting Total Insoluble solids in deposited
			dust.

Appendix D

Surface Gas (Methane) Field Sheets

CHAIN OF CUSTODY

ALS Laboratory: please tick >

El Sydney: 277 Woodpark Rd. Smithfield NSW 2176 Ph: 02 8784 8556 E samples sydney@alsenviro.com

El Brisbane: 32 Shand St Stafford OLD 4053 Ph.07 3243 7222 Eisamoles brisbane @alsenviro.com ☐ Newcastle: 5 Rosegum Rd, Warebrook NSW 2304 ☐ Townsville: 14-15 Desma Ct. Bohle QLD 4818 Ph:02 4968 9403 E samples newcastie@alsenviro.com Ph.07 4796 0600 E. townsville environmental@alsenviro.com Cl. Melbourne: 2-4 Westall Rd. Springvale VIC 3171 Ph:03 8549 9600 E: samples melbourne@aisenviro.com

(1) Adelaide: 2-1 Burma Rd. Pooraka SA 5095 Ph. 08 9359 0890 Eadelaide@alsenviro.com

FI Perth: 10 Hort Way, Malaga WA 8090 Ph: 98 9209 7865 E: camplec perth@alsenviro.com □ Launceston: 27 Wellington St, Launceston TAS 7280 Ph: 03 6331 2158 El laungestori@elsenviro.com

CLIENT:	Shellharbour City Council		t .	OUND REQUIREMENTS: Standard TAT			FOR LABORATORY USE O	
OFFICE:	41 Burelli St WOLLONGONG NSW		e.g., Ultra Ti		or urgent TAT (List d		Custody Seal Intact? Cle) Free De / flozen joe bricks preser	YR No NIA nfugon Yes Ng NIA n Receipt ¹ C
PROJECT:	Dunmore Quarterly Methane Testi	ng	ALS QUO	TE NO.: WO/030/19 TENDER		COC SEQUENCE NUMBER (Cit	cle) receipt?	rifupon Yes No NA
ORDER NUMBER:						COC: 1 2 3 4 5	6 7 Random Sample Temperature o	n Receipt C
PROJECT MANAGER:	: Joel Culton					OF: 1 2 3 4 5		
SAMPLER:		SAMPLER N		RELINQUISHED B	Y:	RECEIVED BY:	RELINQUISHED BY:	REÇEIVED BY:
COC emailed to ALS?	(YES / NO)	EDD FORMA	AT (or defau	m): Kovert	_	Aneta	DATESTAS	DATE: 511 F
Email Reports to :				DATE/TIME: \$1612		Ancte DATE/TIME: B/6/21	DATE/TIME:	DATE/TIME:
				10/0/0	•	1010101		
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	L: CC reports to:				·	T-19.1	
ALS USE ONLY		E DETAILS		CONTAINER INFORMATION	ANALYSIS I	REQUIRED including SUITES (NB. Suite	Codes must be listed to attract suite price)	Additional Information
	MATRIX: So	rlid(S) W ater(W)			Where Met	tals are required, specify Total (unfiltered bottle require	d) or Dissolved (field filtered bottle required).	Additional Information
· <u>-</u> -								Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
				TYPE & PRESERVATIVE TOTAL	. I			
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	(refer to codes below) BOTTI	Surface Methane Testing			
		,	,		Surf. Meth Fest			
	Methane	2/6/21	w		√	✓		
		81612111	6 m					
		210101 11						
	-			•				
							rainen and the same of the sam	
						\\\\\	vironmental Division	
						***	Mork Order Reference	
· ·				·			bllongong Work Order Reference EW2102617	
				<u> </u>				
			ļ			<u> </u>		1
	·					*******		1417 F
						i da a	Cable or solvense in the second of the secon	
							and the second s	<u> </u>
<u>-</u>								
				Total 10	,			

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

	ALS Landfill Emissions Report						port
	Shellharbou Dunmore	r City Council				Date: Sampler(s)	8/06/2021 Robert DaLio, Megan Gould
Transact / Location	Point	GPS	North	GPS E	ast	CH4 Conc (ppm)	Comments
A	1	6168	179	302 3	14	7.7	
A	2	6168	151	302 3	14	6.4	
A	3	6168	120	302 3	43	9.9	
А	4	6168	103	302 3	43	4.8	
В	1	6168	029	302 3	30	3.2	
В	2	6168	055	302 3	33	3.9	Methane Cage
В	3	6168	086	302 3	33	8.9	
В	4	6168	119	302 3	31	4.4	
В	5	6168	142	302 3	32	4.2	
В	6	6168	168	302 3	32	4.1	
В	7	6168	187	302 3	35	5.7	
В	8	6167	997	302 3	24	3.1	
В	9	6167	972	302 3	23	3.1	
				· · · · · · · · · · · · · · · · · · ·			

ı	l				
С	1	6168 268	302 271	3.1	
С	2	6168 224	302 277	3.9	
С	3	6168 179	302 289	4.5	
С	4	6168 116	302 306	4.0	
С	5	6168 049	302 316	4.4	
С	6	6167 980	302 318	3.1	
С	7	6167 912	302 311	3.2	
С	8	6167 865	302 304	3.2	
С	9	6167 936	302 299	3.5	
D	1	6167 942	302 286	3.2	
D	2	6167 985	302 280	4.0	
D	3	6168 030	302 271	3.2	
D	4	6168 044	302 271	3.4	
D	5	6168 055	302 270	3.7	
D	6	6168 071	302 268	3.6	
	- 1				
Е	1	6168 079	302 239	3.8	
E	2	6168 050	302 249	3.8	
E	3	6168 021	302 250	3.9	
E	4	6167 987	302 261	4.0	
E	5	6167 914	302 271	3.2	

F	1	6167 904	302 261	3.1	Methane Cage
F	2	6167 933	302 247	2.9	
F	3	6167 966	302 233	3.2	
F	4	6168 011	302 221	3.0	
F	5	6168 036	302 218	3.3	
F	6	6168 069	302 209	2.9	
G	1	6168 217	302 149	3.6	
G	2	6168 224	302 184	3.8	
G	3	6168 246	302 218	3.3	
G	4	6168 269	302 254	3.2	
	-	2402.000	000 455	0.0	
Н		6168 220	302 455	3.0	
Н	2	6168 172	302 451	3.0	
Н	3	6168 103	302 440	3.1	
Н	4	6168 060	302 442	3.1	
Н	5	6168 023	301 467	3.1	
Н	6	6167 997	301 478	3.1	
Н	7	6167 967	301 499	3.1	
Н	8	6167 933	302 522	3.1	
Н	9	6167 889	302 514	3.1	
Н	10	6167 919	302 438	3.0	
Н	11	6167 892	302 474	3.0	

Н	12	6167 938	302 452	2.9	
Н	13	6167 974	302 427	2.7	
Н	14	6167 998	302 391	2.1	
Н	15	6167 840	302 397	1.8	
н	16	6167 926	302 406	1.7	
н	17	6167 996	302 411	1.6	
н	18	6168 028	302 419	1.5	
н	19	6168 228	302 427	1.6	
н	20	6168 270	302 375	2.0	
н	21	6168 300	302 270	2.4	
н	22	6168 280	302 199	2.2	
н	23	6168 228	302 139	2.1	
н	24	6168 161	302 083	2.1	
н	25	6168 111	302 28	2.0	
н	26	6168 060	301 984	1.9	
н	27	6167 959	302 969	2.0	
н	28	6167 900	301 970	2.0	
н	29	6167 842	301 996	18.3	Freshly excavated top soil
н	30	6167 808	301 034	32.7	Freshly excavated top soil
н	31	6167 778	301 063	33.2	Freshly excavated top soil
н	32	6167 710	302 125	15.6	
н	33	6167 676	301 211	24.6	
Н	34	6167 695	302 311	36.9	

н	35	6167 710	302 361	11.7	
Н	36	6167 723	302 384	3.9	
Н	37	6167 775	302 390	4.7	
I	1	6167 947	301 980	5.6	
I	2	6167 947	302 020	3.3	
I	3	6167 941	302 077	2.9	
	4	6167 935	301 134	3.4	
J	1	6167 955	302 157	9.3	
J	2	6168 004	302 145	3.1	
J	3	6168 049	302 129	5.0	
J	4	6168 104	302 109	3.9	
J	5	6167 150	302 092	3.1	
К	1	6168 315	302 269	2.5	
К	2	6168 327	302 295	2.6	
К	3	6168 338	302 325	2.5	
К	4	6168 353	302 357	2.7	
К	5	6168 404	302 328	2.6	
К	6	6168 387	<u>302</u> 274	2.6	

	1		- 		
K	7	6168 363	<u>302</u> 272	2.5	
K	8	6168 376	302 316	2.8	
L	. 1	6168 558	302 226	1.4	
L	. 2	6168 493	302 188	1.5	
L	. 3	6168 450	302 145	1.5	
L	. 4	6168 399	302 117	1.5	
L	. 5	6168 348	302 69	1.6	
L	. 6	6168 300	302 026	1.6	
Compressor Shed	1			15.6	Surrounded by freshly dug topsoil
Office	1			1.6	
Community Recycling Centre	1			2.5	
OLD Weighbridge	1			2.1	
OLD Weighbridge Toilet	1			18.2	
Revolve Shop	1			1.8	
Building Truckwash	1			2.3	
New Weighbridge	1			2.4	
Methane Blank (Pre testing)				2.9	Taken at entrance to Dunmore site before main gate Taken at entrance to Dunmore site

Comments:

Sampling performed in accordance to EPA Environmental Guidelines Solid Waste Landfills, Second Edition, 2016 Gas concentrations are reported as raw values without correction for background concentration.

Appendix E

Calibration Certificates

CERTIFICATION OF CALIBRATION

Issued by: QED Environmental Systems Ltd.

Kalibrierzertifikat Nummer - Calibration Certificate number:

16233 H-02188

Instrument:

Laser One

Seriennummer - Serial number

16233

Beschreibung des Kalibriervorgangs:

Die Kalibrierung des Gerätes erfolgt durch Messung der Reaktionszeit des Sensors unter Beaufschlagung von geeichten Prüfgasen. Der angewandte Kalibriervorgang entspricht der Arbeitsweise des Gerätes. Der maximale Messfehler des Messgerätes wie im Datenblatt angegeben.

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Überprüfung des Messgerätes im Messbereich - Gas verification from 0 - 1000 ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	2.7	2.3	2.3	2.4	2.33	0.40	0.04	0.04
1000	3.1	3.1	3.1	3.1	3.10	0.00	0.00	0.00
1000	10.3	10.5	10.4	10.4	10.43	0.20	0.02	0.02
1000	107	107	108	107	107.33	1.00	0.10	0.10
1000	1000	1000	1000	1000	1000.00	0.00	0.00	0.00

Unsicherheit - Uncertainty	0.10	%
Maximaler Fehler % - Max % error	0.10	% FS

Überprüfung des Messgerätes im Messbereich - Gas verification from 0 - 100 % vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00
10.00	2.20	2.20	2.20	2.20	2,20	0.00	0.00	0.00
10.00	5.00	4.90	4.90	4.90	4.90	0.10	1.00	1.00
100.00	15.00	14.90	14.90	14.90	14.90	0.10	0.10	0.10
100.00	50.00	49.70	49.50	49.80	49.67	0.50	0.50	0.50
100.00	100.00	97.90	98.00	98.00	97.97	2.10	2.10	2.10

Unsicherheit - Uncertainty	2.10	%
Maximaler Fehler % - Max % error	2.10	% FS

Überprüfung des Messgerätes im Messbereich - Gas verification from 0 - 100% CH4 LEL (0 - 4.4% vol)

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error (% F.s.)	Maximum error %
10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10.00	2.00	2.00	2.00	2.00	2.00	0.00	0.00	0.00
100.00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00

Incertezza - Uncertainty	0.00	%
Massimo errore % - Max % error	0.00	% FS

www.qedenv.com

+44 (0) 333 800 0088 sales@qedenv.co.uk

CERTIFICATION OF CALIBRATION

Issued by: QED Environmental Systems Ltd.

Umgebungsbedingungen für die Kalibrierung - Environmental conditions during calibration

Temperature	21	C
Pressure	987	mBar

Gasflaschen zur Kalibrierung - Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
Synthetic Air	S1624403EE	19/05/2023	Synthetic Air
3 ppm	143123SG	11/04/2024	CH4
10 ppm	114031SG	11/04/2024	CH4
100 ppm	S1145642R	20/10/2024	CH4
1000 ppm	S1100299S	10/04/2024	CH4
1.0 vol	S1198415S	10/04/2024	CH4
2.2% vol	SP1230777S	29/10/2024	CH4
5% vol	220622	15/01/2022	CH4
15% vol	220594	15/01/2022	CH4
50% vol	232920	08/11/2021	CH4
100% vol	S1260447	05/07/2023	CH4

Kalibrierungsergebnisse Pass Calibration results

Calibration date

Kalibrierungsdatum 25/02/2020

Nächste geplante Kalibrierung 25/02/2021

Next scheduled calibration

Kalibrierungsmanager

Laura McBride

Calibration done by

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

20.6.21 7.02	24.621 7.03	23.6.21 7.01	27.6.21 6.98	015000000 22.6.11	ALVOLO260 21.6.21 6.99 4.00	11.6.21	1216217	21(1) 7.05	10.62 7.04 De	16.9.1	8 20.1 1.9.3	1661	16.6.21 7.06	15621	15.(.2) 7.03 4	11.6.21 7.03 4.0	11.6.2)	11.6.21 7.01 3	10.621	00.6.21	ADRESS 9.6.21 7.52 4.02	Meter ID Date	Certified Value 7.00	Operational Limits +/- 0.02 +/- 0.02	SIN, DIN or Batch \$21/ \$21/ number 007 006
-	_	4.02 10.02	86.6 20.4		9.97			4 4 10.07	4.03 10.0		36.69	_0	_	ollioo	94); [10.04	PH	10.00	+/- 0.05	1000
	10.09 7.15	20	8		ز		10.10 7.15	21.15	ġ		18	-6/6	91.6	ما الم	10.27.2	K		23	5	03 7.16	24	_	pH Junction	pH 7 + (0.15 - 0.25)	25
	б						U	51					~~~	(_								dundadii	Chk Std/CRM	
11-800		15.1%	19.8°C		17-100								12.3°C							11.300			84	79 - 88	
																				(>			146.9	139 - 154	
				3446		1463	1395		1408	4	7	15.4T		1396		1412	1385		1436			ш	1412	1341 - 1482	(10 /12s
																						EC (µS/cm)	10000	9500 - 10500	
				13180		13760	D870		13050	7450		アポラ		12850		12860	12830		13200			n)	12880	12236 - 13524	25 K
									7					<u> </u>									118000	112100 - 123900	
																								Chk Std/CRM	
							202		4.0			から		2.05								DO (% or m	0.0mg/L	<0.2	
				104.9		103.6			503			192		1861								DO (% or mg/L)	100%	95% - 105%	
																						(mV)	229	217 - 240	
																						Turt	NTU		
																						Turbidity (NTU)	NTU		
																						3	NTU		
																						오	0.22	+/- 0.09	
																						Chlorine (mg/L)	0.85	+/- 0.10	
																						g/L)	1.5	+/- 0.14	
M.C.	an	かん	300	30	γ»(·	3 €	PA	つつか	ROZ	Q.	D	ングン	30	アン	75.5	252	ふぐ	ΜÇ	25	wc.	DM	Analyst/ Comments	Certified Value	Operational Limits	

Field Calibration Form

Appendix F

Flare monitoring Reports

Site:	Dunmore Road Landfill	Report issue date:	19-05-2021
Report month:	April 2021	Prepared by:	Matthew Tap
Prepared for:	Shellharbour City Council	Checked by:	Thomas McWilliam

Comments on	Jan 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.
changes to existing	Apr 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.
system:	June 2016 - LGI disconnected the extended gas capture system to assist the council.
	Sep 2016 - LGI disconnected the extended gas capture system to fassist council.
	Nov 2016 - LGI commissioned the connection to leachate sump 6 as of 23-11-2016.
	May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system
	November 2019 - LGI on site to move mainline up batter and reconnected infrastructure
	·
	that had been previously disconnected. Including 4 wells on the dimple and 160mm
	leachate riser.
	April 2020 - LGI installed flowline to sump 6 after earlier disconnection.
	February 2021: LGI installed 13 new vertical wells, including a new submain.
Comments on flare	April 2021: Normal operation was observed throughout the reporting period. Intermittent
operation /	planned shutdowns occured due to field upgrades, resulting in 2 hours of down time.
maintenance:	praming in a management of the state of the
maintenance.	LGI installed 13 new wells within the recently completed cell, increasing the average flow
	, , , , , , , , , , , , , , , , , , , ,
	from ~320m3/hr to ~500m3/hr.
	March 2021: LGI temporarily removed 5 flowlines to allow for final capping works to
	continue. The flowines were reinstalled into the final cap with assistance from the civil
	contractors.
Recommendations:	Drillings works highlighted the need for increased leachate management on site as there
	were multiple areas of overly wet, saturated waste. Drill logs will be provided upon
	completion of the construction project to verify this.
	dempioner of the deficit dead in project to verify this.

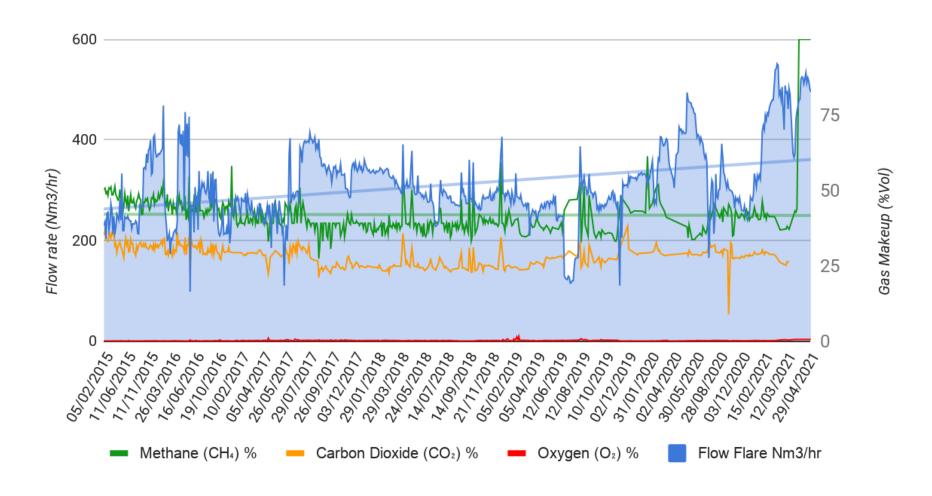
FLARE DATA RESULTS:

Date	CH4 %	CO2 % ¹	O2 %	STACK TEMP °C	CUMULATIVE FLOW m3 ²	FLOW m3/h
06/04/2021	-	-	-	794	18,327,404	525
09/04/2021	-	-	-	836	18,366,523	524
14/04/2021	36.4	26.5	1.7	827	18,428,411	521
19/04/2021	35.0	26	1.8	820	18,490,965	533
29/04/2021	35.9	25.3	1.6	807	18,616,946	502
30/04/2021	-	-	-	744	18,626,385 ³	495
Average	36.0	26.0	1.7	804		516

LGI Limited

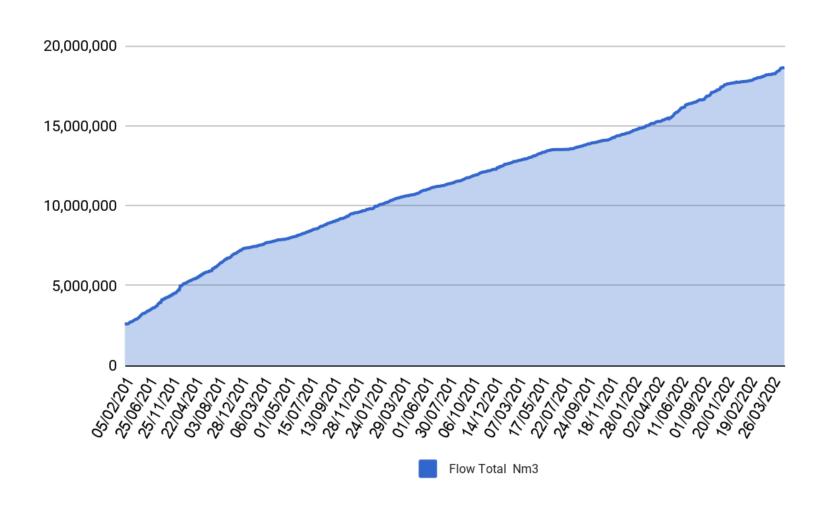
Report Issued 17-05-2021

07 3711 2225


¹ Local LFG CO2% are recorded on site. An average value is generated remotely based on local CO2 recordings.

² Cumulative flow represents a snapshot recording, taken on the corresponding date. Please note that this value does not account for the volume of gas, which was combusted in the flare unit from 22 September 2014 to 30 January 2015 while the flow meter was removed for repair. LGI has provided an estimate of this additional volume to Council.

³ 18,626,385m³ of flared landfill gas up to the 30th of April 2021 represents carbon abatement of approximately 132,679 tonnes of CO2 equivalent (total methane abated by gas capture system to date).



Dunmore Flare Gas Fuel Trend

Dunmore Flare Cumulative Flow

LANDFILL GAS MONTHLY REPORT - DUNMORE LANDFILL

Please note:

This report has been prepared by LGI Ltd (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

Site:	Dunmore Road Landfill	Report issue date:	11-06-2021
Report month:	May 2021	Prepared by:	Matthew Tap
Prepared for:	Shellharbour City Council	Checked by:	Thomas McWilliam

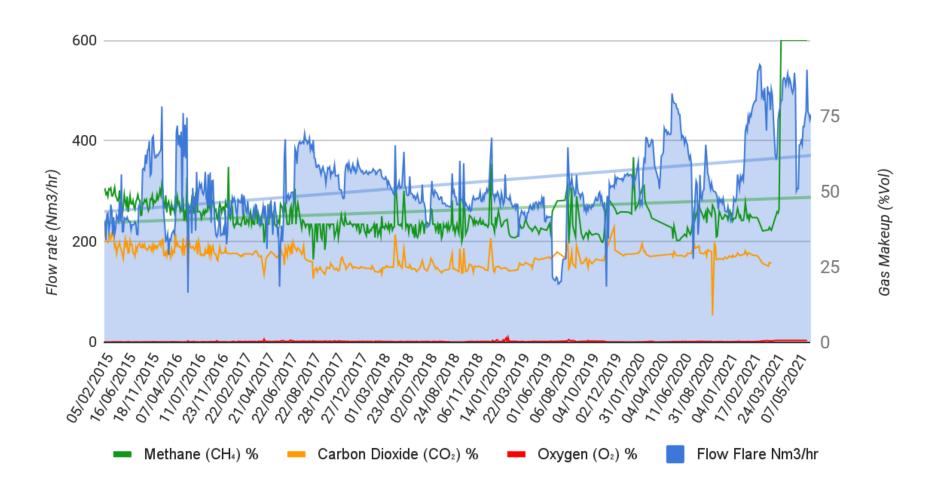
0	1 - 0040 1 O F				
Comments on	Jan 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.				
changes to existing	Apr 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.				
system:	June 2016 - LGI disconnected the extended gas capture system to assist the council.				
	Sep 2016 - LGI disconnected the extended gas capture system to fassist council.				
	Nov 2016 - LGI commissioned the connection to leachate sump 6 as of 23-11-2016.				
	May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system				
	November 2019 - LGI on site to move mainline up batter and reconnected infrastructure				
	that had been previously disconnected. Including 4 wells on the dimple and 160mm				
	leachate riser.				
	April 2020 - LGI installed flowline to sump 6 after earlier disconnection.				
	February 2021: LGI installed 13 new vertical wells, including a new submain.				
Comments on flare					
	May 2021. Normal operation was observed unoughout the reporting period				
operation /	1.01				
maintenance:	LGI installed 13 new wells within the recently completed cell, increasing the average flow				
	from ~320m3/hr to ~500m3/hr.				
	In May, LGI made some minor repairs to the system including replacement of the				
	footvalve of the CKV.				
Recommendations:	Drilling works highlighted the need for increased leachate management on site as there				
1.ccommendations.	were multiple areas of overly wet, saturated waste.				
	were multiple areas or overly wer, saturated waste.				

FLARE DATA RESULTS:

Date	CH4 %	CO2 % ¹	O2 %	STACK TEMP °C	CUMULATIVE FLOW m3 ²	FLOW m3/h
01/05/2021	35.1	26	1.6	893	18,640,190	535
07/05/2021	-	-	-	634	18,707,617	305
14/05/2021	-	-	-	792	18,776,748	428
25/05/2021	35.8	24.8	2.4	823	18,894,714	453
27/05/2021	37.7	25.5	3.0	751	18,913,683	442
31/05/2021	-	-	-	802	18,956,518 ³	452
Average	36.2	25.4	2.3	783		436

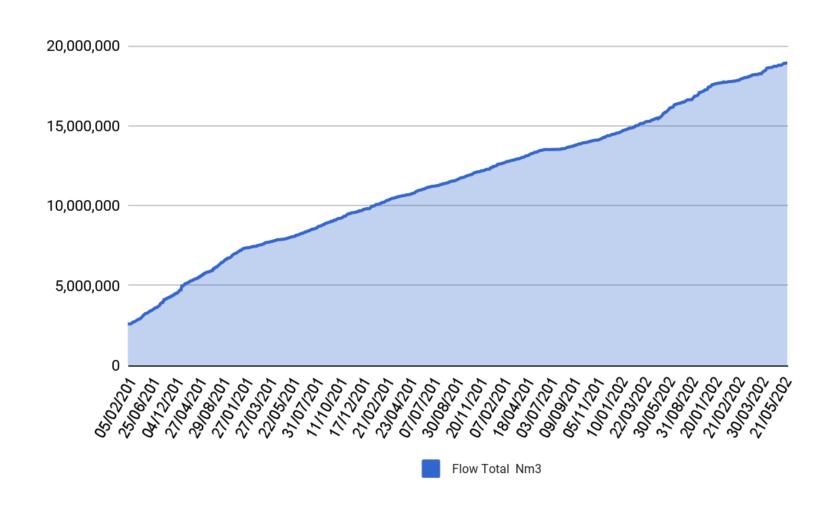
LGI Limited

Report Issued 11-06-2021


¹ Local LFG CO2% are recorded on site. An average value is generated remotely based on local CO2 recordings.

² Cumulative flow represents a snapshot recording, taken on the corresponding date. Please note that this value does not account for the volume of gas, which was combusted in the flare unit from 22 September 2014 to 30 January 2015 while the flow meter was removed for repair. LGI has provided an estimate of this additional volume to Council.

³ 18,956,518m³ of flared landfill gas up to the 31st of May 2021 represents carbon abatement of approximately 135,031 tonnes of CO2 equivalent (total methane abated by gas capture system to date).



Dunmore Flare Gas Fuel Trend

Dunmore Flare Cumulative Flow

LANDFILL GAS MONTHLY REPORT - DUNMORE LANDFILL

Please note:

This report has been prepared by LGI Ltd (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.

Dunmore Road Landfill - LFG REPORT JUNE 2021

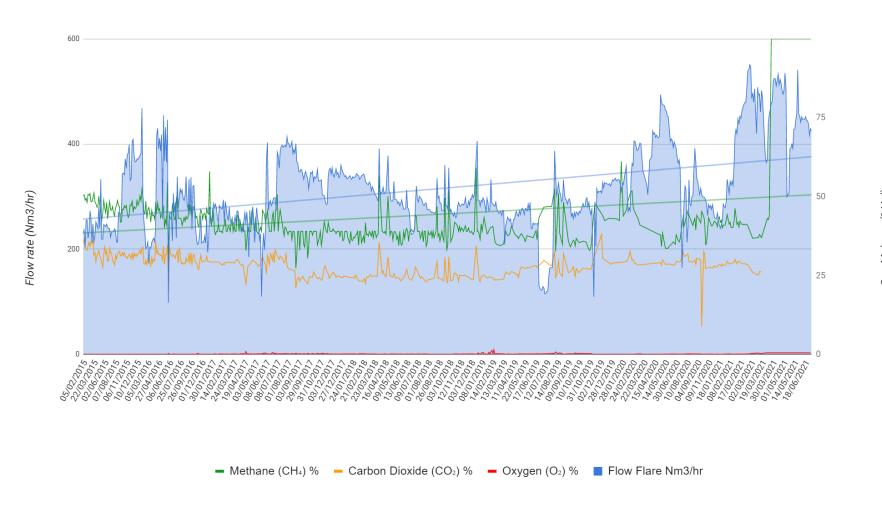
Site:	Dunmore Road Landfill	Report issue date:	21-07-2021
Report month:	June 2021	Prepared by:	Matthew Tap
Prepared for:	Shellharbour City Council	Checked by:	Brendan Fraser

Comments on	Jan 2016 - LGI disconnected the 4 lateral wells and 8 vertical wells.				
changes to existing	Apr 2016 - LGI reconnected 8 vertical wells in the SE corner and 4 lateral wells.				
system:	June 2016 - LGI disconnected the extended gas capture system to assist the council.				
	Sep 2016 - LGI disconnected the extended gas capture system to fassist council.				
	Nov 2016 - LGI commissioned the connection to leachate sump 6 as of 23-11-2016.				
	May 2017 - LGI installed an additional 10 vertical wells to the existing LFG system				
	November 2019 - LGI on site to move mainline up batter and reconnected infrastructure				
	that had been previously disconnected. Including 4 wells on the dimple and 160mm				
	leachate riser.				
	April 2020 - LGI installed flowline to sump 6 after earlier disconnection.				
	February 2021: LGI installed 13 new vertical wells, including a new submain.				
Comments on flare	June 2021: Normal operation was observed throughout the reporting period, no				
operation /	shutdown occurred.				
maintenance:					
	LGI installed 13 new wells within the recently completed cell, increasing the average flow				
	from ~320m3/hr to ~450m3/hr.				
Recommendations:	Drilling works highlighted the need for increased leachate management on site as there				
	were multiple areas of overly wet, saturated waste.				

FLARE DATA RESULTS:

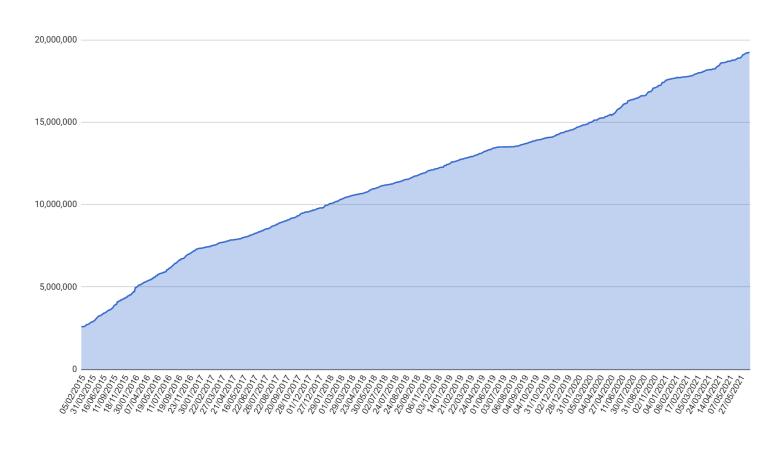
Date	CH4 %	CO2 % ¹	O2 %	STACK TEMP °C	CUMULATIVE FLOW m3 ²	FLOW m3/h
7/6/21	na	na	na	758	18,956,518	452
14/6/21	33.8	24.8	3.3	769	19,107,482	447
18/6/21	na	na	na	755	19,149,217	452
24/6/21	34	24.5	3.4	778	19,213,821	444
29/6/21	na	na	na	719	19,264,035 ³	429
Average	33.9	25.6	3.35	755		444.8

07 3711 2225


¹ Local LFG CO2% are recorded on site. An average value is generated remotely based on local CO2 recordings.

² Cumulative flow represents a snapshot recording, taken on the corresponding date. Please note that this value does not account for the volume of gas, which was combusted in the flare unit from 22 September 2014 to 30 January 2015 while the flow meter was removed for repair. LGI has provided an estimate of this additional volume to Council.

³ 19264,035m³ of flared landfill gas up to the 29th June 2021 represents carbon abatement of approximately 137,222 tonnes of CO2 equivalent (total methane abated by gas capture system to date).



Dunmore Flare Gas Fuel Trend

Dunmore Flare Cumulative Flow

Flow Total Nm3

LANDFILL GAS MONTHLY REPORT - DUNMORE LANDFILL

Please note:

This report has been prepared by LGI Ltd (LGI) with all reasonable skill, care and diligence, and taking account of the human power and resources devoted to it by agreement with the client. Information reported herein is based on the interpretation of data collected and has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from LGI. LGI disclaims any responsibility to the client and others in respect of any matters outside the agreed scope of the work.

Where LGI has been accorded gas rights under the terms and conditions of the agreement with the client, the data contained in this report represents confidential commercial information and should not be copied or disseminated in any form to a third party without prior consent from LGI.